Linac_Gen: integrating machine learning and particle-in-cell methods for enhanced beam dynamics at Fermilab

Abhishek Pathak
{"title":"Linac_Gen: integrating machine learning and particle-in-cell methods for enhanced beam dynamics at Fermilab","authors":"Abhishek Pathak","doi":"arxiv-2406.16630","DOIUrl":null,"url":null,"abstract":"Here, we introduce Linac_Gen, a tool developed at Fermilab, which combines\nmachine learning algorithms with Particle-in-Cell methods to advance beam\ndynamics in linacs. Linac_Gen employs techniques such as Random Forest, Genetic\nAlgorithms, Support Vector Machines, and Neural Networks, achieving a tenfold\nincrease in speed for phase-space matching in linacs over traditional methods\nthrough the use of genetic algorithms. Crucially, Linac_Gen's adept handling of\n3D field maps elevates the precision and realism in simulating beam\ninstabilities and resonances, marking a key advancement in the field.\nBenchmarked against established codes, Linac_Gen demonstrates not only improved\nefficiency and precision in beam dynamics studies but also in the design and\noptimization of linac systems, as evidenced in its application to Fermilab's\nPIP-II linac project. This work represents a notable advancement in accelerator\nphysics, marrying ML with PIC methods to set new standards for efficiency and\naccuracy in accelerator design and research. Linac_Gen exemplifies a novel\napproach in accelerator technology, offering substantial improvements in both\ntheoretical and practical aspects of beam dynamics.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.16630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Here, we introduce Linac_Gen, a tool developed at Fermilab, which combines machine learning algorithms with Particle-in-Cell methods to advance beam dynamics in linacs. Linac_Gen employs techniques such as Random Forest, Genetic Algorithms, Support Vector Machines, and Neural Networks, achieving a tenfold increase in speed for phase-space matching in linacs over traditional methods through the use of genetic algorithms. Crucially, Linac_Gen's adept handling of 3D field maps elevates the precision and realism in simulating beam instabilities and resonances, marking a key advancement in the field. Benchmarked against established codes, Linac_Gen demonstrates not only improved efficiency and precision in beam dynamics studies but also in the design and optimization of linac systems, as evidenced in its application to Fermilab's PIP-II linac project. This work represents a notable advancement in accelerator physics, marrying ML with PIC methods to set new standards for efficiency and accuracy in accelerator design and research. Linac_Gen exemplifies a novel approach in accelerator technology, offering substantial improvements in both theoretical and practical aspects of beam dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linac_Gen:整合机器学习和粒子在胞方法,增强费米实验室的光束动力学
在这里,我们介绍费米实验室开发的一种工具--Linac_Gen,它将机器学习算法与 "粒子入室 "方法结合起来,推动了线性加速器中光束动力学的发展。Linac_Gen采用了随机森林(Random Forest)、遗传算法(GeneticAlgorithms)、支持向量机(Support Vector Machines)和神经网络(Neural Networks)等技术,通过使用遗传算法,使在直子中进行相空间匹配的速度比传统方法提高了十倍。最重要的是,Linac_Gen 对三维场图的熟练处理提高了模拟束稳定性和共振的精度和真实性,标志着这一领域的关键进步。与已有的代码相比,Linac_Gen 不仅在束动力学研究方面提高了效率和精度,而且在直列加速器系统的设计和优化方面也有所改进,它在费米实验室 PIP-II 直列加速器项目中的应用就证明了这一点。这项工作代表了加速器物理学的显著进步,它将 ML 与 PIC 方法结合起来,为加速器设计和研究的效率和精度设定了新标准。Linac_Gen 是加速器技术中一种新方法的典范,在束流动力学的理论和实践方面都有很大改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Potential of Resonance Islands and Bent Crystals for a Novel Slow Extraction from Circular Hadron Accelerators Space Charge and Future Light Sources Beam Dynamics simulations for ERDC project -- SRF linac for industrial use Realizing Steady-State Microbunching with Optical Stochastic Crystallization Towards Agentic AI on Particle Accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1