High similarity controllable face anonymization based on dynamic identity perception

Jiayi Xu, Xuan Tan, Yixuan Ju, Xiaoyang Mao, Shanqing Zhang
{"title":"High similarity controllable face anonymization based on dynamic identity perception","authors":"Jiayi Xu, Xuan Tan, Yixuan Ju, Xiaoyang Mao, Shanqing Zhang","doi":"10.1007/s00371-024-03526-9","DOIUrl":null,"url":null,"abstract":"<p>In the meta-universe scenario, with the development of personalized social networks, interactive behaviors such as uploading and sharing personal and family photographs are becoming increasingly widespread. Consequently, the risk of being searched or leaking personal financial information increases. A possible solution is to use anonymized face images instead of real images in the public situations. Most of the existing face anonymization methods attempt to replace a large portion of the face image to modify identity information. However, the resulted faces are often not similar enough to the original faces as seen with the naked eyes. To maintain visual coherence as much as possible while avoiding recognition by face recognition systems, we propose to detect part of the face that is most relevant to the identity based on saliency analysis. Furthermore, we preserve the identification of irrelevant face features by re-injecting them into the regenerated face. The proposed model consists of three stages. Firstly, we employ a dynamic identity perception network to detect the identity-relevant facial region and generate a masked face with removed identity. Secondly, we apply feature selection and preservation network that extracts basic semantic attributes from the original face and also extracts multilevel identity-irrelevant face features from the masked face, and then fuses them into conditional feature vectors for face regeneration. Finally, a pre-trained StyleGAN2 generator is applied to obtain a high-quality identity-obscured face image. The experimental results show that the proposed method can obtain more realistic anonymized face images that retain most of the original facial attributes, while it can deceive face recognition system to protect privacy in the modern digital economy and entertainment scenarios.</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03526-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the meta-universe scenario, with the development of personalized social networks, interactive behaviors such as uploading and sharing personal and family photographs are becoming increasingly widespread. Consequently, the risk of being searched or leaking personal financial information increases. A possible solution is to use anonymized face images instead of real images in the public situations. Most of the existing face anonymization methods attempt to replace a large portion of the face image to modify identity information. However, the resulted faces are often not similar enough to the original faces as seen with the naked eyes. To maintain visual coherence as much as possible while avoiding recognition by face recognition systems, we propose to detect part of the face that is most relevant to the identity based on saliency analysis. Furthermore, we preserve the identification of irrelevant face features by re-injecting them into the regenerated face. The proposed model consists of three stages. Firstly, we employ a dynamic identity perception network to detect the identity-relevant facial region and generate a masked face with removed identity. Secondly, we apply feature selection and preservation network that extracts basic semantic attributes from the original face and also extracts multilevel identity-irrelevant face features from the masked face, and then fuses them into conditional feature vectors for face regeneration. Finally, a pre-trained StyleGAN2 generator is applied to obtain a high-quality identity-obscured face image. The experimental results show that the proposed method can obtain more realistic anonymized face images that retain most of the original facial attributes, while it can deceive face recognition system to protect privacy in the modern digital economy and entertainment scenarios.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于动态身份感知的高相似度可控人脸匿名技术
在元宇宙场景中,随着个性化社交网络的发展,上传和分享个人和家庭照片等互动行为越来越普遍。因此,被搜索或泄露个人财务信息的风险也随之增加。一个可行的解决方案是在公共场合使用匿名人脸图像代替真实图像。现有的大多数人脸匿名方法都试图替换大部分人脸图像来修改身份信息。然而,这样得到的人脸往往与肉眼看到的原始人脸不够相似。为了在避免被人脸识别系统识别的同时尽可能保持视觉连贯性,我们建议根据显著性分析来检测与身份最相关的人脸部分。此外,我们还通过将无关的人脸特征重新注入到再生人脸中来保留对这些特征的识别。所提出的模型包括三个阶段。首先,我们采用动态身份感知网络来检测与身份相关的面部区域,并生成一个去除了身份的蒙面人脸。其次,我们应用特征选择和保存网络,从原始人脸中提取基本语义属性,并从蒙面人脸中提取多层次的与身份无关的人脸特征,然后将它们融合为条件特征向量,用于人脸再生。最后,应用预先训练好的 StyleGAN2 生成器获得高质量的身份模糊人脸图像。实验结果表明,所提出的方法能获得更真实的匿名人脸图像,保留了大部分原始面部属性,同时还能欺骗人脸识别系统,在现代数字经济和娱乐场景中保护个人隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced deepfake detection with enhanced Resnet-18 and multilayer CNN max pooling Video-driven musical composition using large language model with memory-augmented state space 3D human pose estimation using spatiotemporal hypergraphs and its public benchmark on opera videos Topological structure extraction for computing surface–surface intersection curves Lunet: an enhanced upsampling fusion network with efficient self-attention for semantic segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1