Artwork pricing model integrating the popularity and ability of artists

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY Asta-Advances in Statistical Analysis Pub Date : 2024-07-02 DOI:10.1007/s10182-024-00504-3
Jinsu Park, Yoonjin Lee, Daewon Yang, Jongho Park, Hohyun Jung
{"title":"Artwork pricing model integrating the popularity and ability of artists","authors":"Jinsu Park,&nbsp;Yoonjin Lee,&nbsp;Daewon Yang,&nbsp;Jongho Park,&nbsp;Hohyun Jung","doi":"10.1007/s10182-024-00504-3","DOIUrl":null,"url":null,"abstract":"<div><p>Considerable research has been devoted to understanding the popularity effect on the art market dynamics, meaning that artworks by popular artists tend to have high prices. The hedonic pricing model has employed artists’ reputation attributes, such as survey results, to understand the popularity effect, but the reputation attributes are constant and not properly defined at the point of artwork sales. Moreover, the artist’s ability has been measured via random effect in the hedonic model, which fails to reflect ability changes. To remedy these problems, we present a method to define the popularity measure using the artwork sales dataset without relying on the artist’s reputation attributes. Also, we propose a novel pricing model to appropriately infer the time-dependent artist’s abilities using the presented popularity measure. An inference algorithm is presented using the EM algorithm and Gibbs sampling to estimate model parameters and artist abilities. We use the Artnet dataset to investigate the size of the rich-get-richer effect and the variables affecting artwork prices in real-world art market dynamics. We further conduct inferences about artists’ abilities under the popularity effect and examine how ability changes over time for various artists with remarkable interpretations.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"108 4","pages":"889 - 913"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-024-00504-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-024-00504-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Considerable research has been devoted to understanding the popularity effect on the art market dynamics, meaning that artworks by popular artists tend to have high prices. The hedonic pricing model has employed artists’ reputation attributes, such as survey results, to understand the popularity effect, but the reputation attributes are constant and not properly defined at the point of artwork sales. Moreover, the artist’s ability has been measured via random effect in the hedonic model, which fails to reflect ability changes. To remedy these problems, we present a method to define the popularity measure using the artwork sales dataset without relying on the artist’s reputation attributes. Also, we propose a novel pricing model to appropriately infer the time-dependent artist’s abilities using the presented popularity measure. An inference algorithm is presented using the EM algorithm and Gibbs sampling to estimate model parameters and artist abilities. We use the Artnet dataset to investigate the size of the rich-get-richer effect and the variables affecting artwork prices in real-world art market dynamics. We further conduct inferences about artists’ abilities under the popularity effect and examine how ability changes over time for various artists with remarkable interpretations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合艺术家人气和能力的艺术品定价模式
大量研究致力于了解艺术市场动态中的人气效应,即受欢迎艺术家的艺术品往往价格较高。对冲定价模型利用艺术家的声誉属性(如调查结果)来理解人气效应,但声誉属性是恒定的,在艺术品销售时并没有正确定义。此外,在对冲定价模型中,艺术家的能力是通过随机效应来衡量的,无法反映能力的变化。为了解决这些问题,我们提出了一种方法,利用艺术品销售数据集来定义受欢迎程度,而不依赖于艺术家的声誉属性。此外,我们还提出了一个新颖的定价模型,利用所提出的受欢迎程度指标来适当推断随时间变化的艺术家能力。我们还提出了一种推理算法,使用 EM 算法和吉布斯采样来估计模型参数和艺术家能力。我们使用 Artnet 数据集来研究 "富者愈富 "效应的大小以及在现实世界艺术市场动态中影响艺术品价格的变量。我们还进一步推断了艺术家在人气效应下的能力,并研究了不同艺术家的能力随时间的变化情况,具有显著的解释力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
期刊最新文献
Goodness-of-fit testing in bivariate count time series based on a bivariate dispersion index Bayesian joint relatively quantile regression of latent ordinal multivariate linear models with application to multirater agreement analysis A Finite-sample bias correction method for general linear model in the presence of differential measurement errors Classes of probability measures built on the properties of Benford’s law Publisher Correction: Deducing neighborhoods of classes from a fitted model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1