Testing serial dependence or cross dependence for time series with underreporting

IF 2.4 2区 数学 Q2 BIOLOGY Biometrika Pub Date : 2024-06-22 DOI:10.1093/biomet/asae027
Keyao Wei, Lengyang Wang, Yingcun Xia
{"title":"Testing serial dependence or cross dependence for time series with underreporting","authors":"Keyao Wei, Lengyang Wang, Yingcun Xia","doi":"10.1093/biomet/asae027","DOIUrl":null,"url":null,"abstract":"In practice, it is common for collected data to be underreported, which is particularly prevalent in fields such as social sciences, ecology and epidemiology. Drawing inferences from such data using conventional statistical methods can lead to incorrect conclusions. In this paper, we study tests for serial or cross dependence in time series data that are subject to underreporting. We introduce new test statistics, develop corresponding group-of-blocks bootstrap techniques, and establish their consistency. The methods are shown to be efficient by simulation and are used to identify key factors responsible for the spread of dengue fever and the occurrence of cardiovascular disease.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"197 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asae027","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In practice, it is common for collected data to be underreported, which is particularly prevalent in fields such as social sciences, ecology and epidemiology. Drawing inferences from such data using conventional statistical methods can lead to incorrect conclusions. In this paper, we study tests for serial or cross dependence in time series data that are subject to underreporting. We introduce new test statistics, develop corresponding group-of-blocks bootstrap techniques, and establish their consistency. The methods are shown to be efficient by simulation and are used to identify key factors responsible for the spread of dengue fever and the occurrence of cardiovascular disease.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
测试有漏报的时间序列的序列依赖性或交叉依赖性
在实践中,收集到的数据被漏报是很常见的现象,这在社会科学、生态学和流行病学等领域尤为普遍。使用传统统计方法对此类数据进行推断可能会得出错误的结论。在本文中,我们研究了受漏报影响的时间序列数据中的序列或交叉依赖性检验。我们引入了新的检验统计量,开发了相应的块组引导技术,并确定了它们的一致性。通过模拟证明了这些方法的有效性,并将其用于确定登革热传播和心血管疾病发生的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
期刊最新文献
Local Bootstrap for Network Data A Simple Bootstrap for Chatterjee's Rank Correlation Sensitivity models and bounds under sequential unmeasured confounding in longitudinal studies Studies in the history of probability and statistics, LI: the first conditional logistic regression Robust Covariate-Balancing Method in Learning Optimal Individualized Treatment Regimes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1