{"title":"Geometric quality evaluation of three-dimensional printable concrete using computational fluid dynamics","authors":"Weijiu Cui, Haijun Sun, Jiangang Zhou, Sheng Wang, Xinyu Shi, Yaxin Tao","doi":"10.1007/s11709-024-1080-4","DOIUrl":null,"url":null,"abstract":"<p>The importance of geometrical control of three dimensional (3D) printable concrete without the support of formwork is widely acknowledged. In this study, a numerical model based on computational fluid dynamics was developed to evaluate the geometrical quality of a 3D printed layer. The numerical results were compared, using image analysis, with physical cross-sectional sawn samples. The influence of printing parameters (printing speed, nozzle height, and nozzle diameter) and the rheological behavior of printed materials (yield stress), on the geometrical quality of one printed layer was investigated. In addition, the yield zone of the printed layer was analyzed, giving insights on the critical factors for geometrical control in 3D concrete printing. Results indicated that the developed model can precisely describe the extrusion process, as well as the cross-sectional quality.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"34 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1080-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The importance of geometrical control of three dimensional (3D) printable concrete without the support of formwork is widely acknowledged. In this study, a numerical model based on computational fluid dynamics was developed to evaluate the geometrical quality of a 3D printed layer. The numerical results were compared, using image analysis, with physical cross-sectional sawn samples. The influence of printing parameters (printing speed, nozzle height, and nozzle diameter) and the rheological behavior of printed materials (yield stress), on the geometrical quality of one printed layer was investigated. In addition, the yield zone of the printed layer was analyzed, giving insights on the critical factors for geometrical control in 3D concrete printing. Results indicated that the developed model can precisely describe the extrusion process, as well as the cross-sectional quality.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.