{"title":"Vision-based survey method for extraordinary loads on buildings","authors":"Yang Li, Jun Chen, Pengcheng Wang","doi":"10.1007/s11709-024-1029-7","DOIUrl":null,"url":null,"abstract":"<p>The statistical modeling of extraordinary loads on buildings has been stagnant for decades due to the laborious and error-prone nature of existing survey methods, such as questionnaires and verbal inquiries. This study proposes a new vision-based survey method for collecting extraordinary load data by automatically analyzing surveillance videos. For this purpose, a crowd head tracking framework is developed that integrates crowd head detection and reidentification models based on convolutional neural networks to obtain head trajectories of the crowd in the survey area. The crowd head trajectories are then analyzed to extract crowd quantity and velocities, which are the essential factors for extraordinary loads. For survey areas with frequent crowd movements during temporary events, the equivalent dynamic load factor can be further estimated using crowd velocity to consider dynamic effects. A crowd quantity investigation experiment and a crowd walking experiment are conducted to validate the proposed survey method. The experimental results prove that the proposed survey method is effective and accurate in collecting load data and reasonable in considering dynamic effects during extraordinary events. The proposed survey method is easy to deploy and has the potential to collect substantial and reliable extraordinary load data for determining design load on buildings.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"33 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1029-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The statistical modeling of extraordinary loads on buildings has been stagnant for decades due to the laborious and error-prone nature of existing survey methods, such as questionnaires and verbal inquiries. This study proposes a new vision-based survey method for collecting extraordinary load data by automatically analyzing surveillance videos. For this purpose, a crowd head tracking framework is developed that integrates crowd head detection and reidentification models based on convolutional neural networks to obtain head trajectories of the crowd in the survey area. The crowd head trajectories are then analyzed to extract crowd quantity and velocities, which are the essential factors for extraordinary loads. For survey areas with frequent crowd movements during temporary events, the equivalent dynamic load factor can be further estimated using crowd velocity to consider dynamic effects. A crowd quantity investigation experiment and a crowd walking experiment are conducted to validate the proposed survey method. The experimental results prove that the proposed survey method is effective and accurate in collecting load data and reasonable in considering dynamic effects during extraordinary events. The proposed survey method is easy to deploy and has the potential to collect substantial and reliable extraordinary load data for determining design load on buildings.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.