Normalised Clustering Accuracy: An Asymmetric External Cluster Validity Measure

IF 1.8 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Classification Pub Date : 2024-06-28 DOI:10.1007/s00357-024-09482-2
Marek Gagolewski
{"title":"Normalised Clustering Accuracy: An Asymmetric External Cluster Validity Measure","authors":"Marek Gagolewski","doi":"10.1007/s00357-024-09482-2","DOIUrl":null,"url":null,"abstract":"<p>There is no, nor will there ever be, single best clustering algorithm. Nevertheless, we would still like to be able to distinguish between methods that work well on certain task types and those that systematically underperform. Clustering algorithms are traditionally evaluated using either internal or external validity measures. Internal measures quantify different aspects of the obtained partitions, e.g., the average degree of cluster compactness or point separability. However, their validity is questionable because the clusterings they endorse can sometimes be meaningless. External measures, on the other hand, compare the algorithms’ outputs to fixed ground truth groupings provided by experts. In this paper, we argue that the commonly used classical partition similarity scores, such as the normalised mutual information, Fowlkes–Mallows, or adjusted Rand index, miss some desirable properties. In particular, they do not identify worst-case scenarios correctly, nor are they easily interpretable. As a consequence, the evaluation of clustering algorithms on diverse benchmark datasets can be difficult. To remedy these issues, we propose and analyse a new measure: a version of the optimal set-matching accuracy, which is normalised, monotonic with respect to some similarity relation, scale-invariant, and corrected for the imbalancedness of cluster sizes (but neither symmetric nor adjusted for chance).</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"22 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-024-09482-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

There is no, nor will there ever be, single best clustering algorithm. Nevertheless, we would still like to be able to distinguish between methods that work well on certain task types and those that systematically underperform. Clustering algorithms are traditionally evaluated using either internal or external validity measures. Internal measures quantify different aspects of the obtained partitions, e.g., the average degree of cluster compactness or point separability. However, their validity is questionable because the clusterings they endorse can sometimes be meaningless. External measures, on the other hand, compare the algorithms’ outputs to fixed ground truth groupings provided by experts. In this paper, we argue that the commonly used classical partition similarity scores, such as the normalised mutual information, Fowlkes–Mallows, or adjusted Rand index, miss some desirable properties. In particular, they do not identify worst-case scenarios correctly, nor are they easily interpretable. As a consequence, the evaluation of clustering algorithms on diverse benchmark datasets can be difficult. To remedy these issues, we propose and analyse a new measure: a version of the optimal set-matching accuracy, which is normalised, monotonic with respect to some similarity relation, scale-invariant, and corrected for the imbalancedness of cluster sizes (but neither symmetric nor adjusted for chance).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
归一化聚类精度:一种非对称外部聚类有效性测量方法
现在没有,将来也不会有单一的最佳聚类算法。尽管如此,我们仍然希望能够区分哪些方法在某些任务类型中效果显著,哪些方法系统性地表现不佳。聚类算法传统上使用内部或外部有效性指标进行评估。内部度量对所获得分区的不同方面进行量化,例如聚类的平均紧凑程度或点的可分离性。然而,其有效性值得怀疑,因为它们所认可的聚类有时可能毫无意义。另一方面,外部测量则是将算法的输出与专家提供的固定基本真实分组进行比较。在本文中,我们认为常用的经典分区相似性得分,如归一化互信息、Fowlkes-Mallows 或调整后的兰德指数,都缺少一些理想的特性。特别是,它们不能正确识别最坏情况,也不容易解释。因此,在不同的基准数据集上对聚类算法进行评估非常困难。为了解决这些问题,我们提出并分析了一种新的度量方法:最优集合匹配准确度的一个版本,它是归一化的、与某种相似性关系相关的单调性、规模不变性,并针对聚类大小的不平衡性进行了修正(但既不对称,也未针对偶然性进行调整)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Classification
Journal of Classification 数学-数学跨学科应用
CiteScore
3.60
自引率
5.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.
期刊最新文献
How to Measure the Researcher Impact with the Aid of its Impactable Area: A Concrete Approach Using Distance Geometry Multi-task Support Vector Machine Classifier with Generalized Huber Loss Clustering-Based Oversampling Algorithm for Multi-class Imbalance Learning Combining Semi-supervised Clustering and Classification Under a Generalized Framework Slope Stability Classification Model Based on Single-Valued Neutrosophic Matrix Energy and Its Application Under a Single-Valued Neutrosophic Matrix Scenario
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1