A Calibration Approach for Elasticity Estimation with Medical Tools

Sarah Grube, Maximilian Neidhardt, Anna-Katarina Herrmann, Johanna Sprenger, Kian Abdolazizi, Sarah Latus, Christian J. Cyron, Alexander Schlaefer
{"title":"A Calibration Approach for Elasticity Estimation with Medical Tools","authors":"Sarah Grube, Maximilian Neidhardt, Anna-Katarina Herrmann, Johanna Sprenger, Kian Abdolazizi, Sarah Latus, Christian J. Cyron, Alexander Schlaefer","doi":"arxiv-2406.09947","DOIUrl":null,"url":null,"abstract":"Soft tissue elasticity is directly related to different stages of diseases\nand can be used for tissue identification during minimally invasive procedures.\nBy palpating a tissue with a robot in a minimally invasive fashion\nforce-displacement curves can be acquired. However, force-displacement curves\nstrongly depend on the tool geometry which is often complex in the case of\nmedical tools. Hence, a tool calibration procedure is desired to directly map\nforce-displacement curves to the corresponding tissue elasticity.We present an\nexperimental setup for calibrating medical tools with a robot. First, we\npropose to estimate the elasticity of gelatin phantoms by spherical indentation\nwith a state-of-the-art contact model. We estimate force-displacement curves\nfor different gelatin elasticities and temperatures. Our experiments\ndemonstrate that gelatin elasticity is highly dependent on temperature, which\ncan lead to an elasticity offset if not considered. Second, we propose to use a\nmore complex material model, e.g., a neural network, that can be trained with\nthe determined elasticities. Considering the temperature of the gelatin sample\nwe can represent different elasticities per phantom and thereby increase our\ntraining data.We report elasticity values ranging from 10 to 40 kPa for a 10%\ngelatin phantom, depending on temperature.","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.09947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Soft tissue elasticity is directly related to different stages of diseases and can be used for tissue identification during minimally invasive procedures. By palpating a tissue with a robot in a minimally invasive fashion force-displacement curves can be acquired. However, force-displacement curves strongly depend on the tool geometry which is often complex in the case of medical tools. Hence, a tool calibration procedure is desired to directly map force-displacement curves to the corresponding tissue elasticity.We present an experimental setup for calibrating medical tools with a robot. First, we propose to estimate the elasticity of gelatin phantoms by spherical indentation with a state-of-the-art contact model. We estimate force-displacement curves for different gelatin elasticities and temperatures. Our experiments demonstrate that gelatin elasticity is highly dependent on temperature, which can lead to an elasticity offset if not considered. Second, we propose to use a more complex material model, e.g., a neural network, that can be trained with the determined elasticities. Considering the temperature of the gelatin sample we can represent different elasticities per phantom and thereby increase our training data.We report elasticity values ranging from 10 to 40 kPa for a 10% gelatin phantom, depending on temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用医疗工具进行弹性估计的校准方法
软组织的弹性与疾病的不同阶段直接相关,可用于微创手术中的组织识别。通过使用机器人以微创方式触诊组织,可以获得力-位移曲线。然而,力-位移曲线很大程度上取决于工具的几何形状,而医疗工具的几何形状通常比较复杂。因此,我们需要一种工具校准程序,将力位移曲线直接映射到相应的组织弹性上。首先,我们建议使用最先进的接触模型,通过球形压痕来估计明胶模型的弹性。我们估算了不同明胶弹性和温度下的力-位移曲线。我们的实验证明,明胶弹性与温度高度相关,如果不考虑温度因素,就会导致弹性偏移。其次,我们建议使用更复杂的材料模型,如神经网络,该模型可根据确定的弹性进行训练。考虑到明胶样本的温度,我们可以表示每个模型的不同弹性,从而增加我们的训练数据。我们报告了 10%明胶模型的弹性值从 10 到 40 kPa 不等,取决于温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry Dynamic landscapes and statistical limits on growth during cell fate specification (Un)buckling mechanics of epithelial monolayers under compression On the design and stability of cancer adaptive therapy cycles: deterministic and stochastic models Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1