LLM-Oracle Machines

Jie Wang
{"title":"LLM-Oracle Machines","authors":"Jie Wang","doi":"arxiv-2406.12213","DOIUrl":null,"url":null,"abstract":"Contemporary AI applications leverage large language models (LLMs) for their\nknowledge and inference capabilities in natural language processing tasks. This\napproach aligns with the concept of oracle Turing machines (OTMs). To capture\nthe essence of these computations, including those desired but not yet in\npractice, we extend the notion of OTMs by employing a cluster of LLMs as the\noracle. We present four variants: basic, augmented, fault-avoidance, and\n$\\epsilon$-fault. The first two variants are commonly observed, whereas the\nlatter two are specifically designed to ensure reliable outcomes by addressing\nLLM hallucinations, biases, and inconsistencies.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.12213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Contemporary AI applications leverage large language models (LLMs) for their knowledge and inference capabilities in natural language processing tasks. This approach aligns with the concept of oracle Turing machines (OTMs). To capture the essence of these computations, including those desired but not yet in practice, we extend the notion of OTMs by employing a cluster of LLMs as the oracle. We present four variants: basic, augmented, fault-avoidance, and $\epsilon$-fault. The first two variants are commonly observed, whereas the latter two are specifically designed to ensure reliable outcomes by addressing LLM hallucinations, biases, and inconsistencies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LLM-Oracle 机器
当代人工智能应用在自然语言处理任务中利用大型语言模型(LLM)的知识和推理能力。这种方法与甲骨文图灵机(OTM)的概念不谋而合。为了捕捉这些计算的本质,包括那些想要但尚未付诸实践的计算,我们扩展了 OTM 的概念,将 LLM 群集作为理论图灵机。我们提出了四种变体:基本变体、增强变体、故障规避变体和($epsilon$-fault)故障变体。前两种变体是常见的,而后两种变体则是专门设计的,目的是通过解决 LLM 的幻觉、偏差和不一致性来确保可靠的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Query Learning of Advice and Nominal Automata Well-Behaved (Co)algebraic Semantics of Regular Expressions in Dafny Run supports and initial algebra supports of weighted automata Alternating hierarchy of sushifts defined by nondeterministic plane-walking automata $\mathbb{N}$-polyregular functions arise from well-quasi-orderings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1