Francisco de Arriba-Pérez, Silvia García-Méndez, Fátima Leal, Benedita Malheiro, Juan C. Burguillo
{"title":"Online Detection and Infographic Explanation of Spam Reviews with Data Drift Adaptation","authors":"Francisco de Arriba-Pérez, Silvia García-Méndez, Fátima Leal, Benedita Malheiro, Juan C. Burguillo","doi":"10.15388/24-infor562","DOIUrl":null,"url":null,"abstract":"Spam reviews are a pervasive problem on online platforms due to its significant impact on reputation. However, research into spam detection in data streams is scarce. Another concern lies in their need for transparency. Consequently, this paper addresses those problems by proposing an online solution for identifying and explaining spam reviews, incorporating data drift adaptation. It integrates (<i>i</i>) incremental profiling, (<i>ii</i>) data drift detection & adaptation, and (<i>iii</i>) identification of spam reviews employing Machine Learning. The explainable mechanism displays a visual and textual prediction explanation in a dashboard. The best results obtained reached up to 87% spam <i>F</i>-measure.\nPDF XML","PeriodicalId":56292,"journal":{"name":"Informatica","volume":"23 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.15388/24-infor562","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Spam reviews are a pervasive problem on online platforms due to its significant impact on reputation. However, research into spam detection in data streams is scarce. Another concern lies in their need for transparency. Consequently, this paper addresses those problems by proposing an online solution for identifying and explaining spam reviews, incorporating data drift adaptation. It integrates (i) incremental profiling, (ii) data drift detection & adaptation, and (iii) identification of spam reviews employing Machine Learning. The explainable mechanism displays a visual and textual prediction explanation in a dashboard. The best results obtained reached up to 87% spam F-measure.
PDF XML
期刊介绍:
The quarterly journal Informatica provides an international forum for high-quality original research and publishes papers on mathematical simulation and optimization, recognition and control, programming theory and systems, automation systems and elements. Informatica provides a multidisciplinary forum for scientists and engineers involved in research and design including experts who implement and manage information systems applications.