Lenka Plavcová, Radek Jupa, Günter Hoch, Martin Mészáros, Klára Scháňková
{"title":"Seasonal coordination of aboveground vegetative and reproductive growth and storage in apple trees subjected to defoliation, flower and fruit thinning","authors":"Lenka Plavcová, Radek Jupa, Günter Hoch, Martin Mészáros, Klára Scháňková","doi":"10.1007/s00468-024-02539-0","DOIUrl":null,"url":null,"abstract":"<div><h3>Key message</h3><p>The growth rates of current-year shoots, fruits and trunks in apple trees peak sequentially during the growing season. The period of most intense growth coincided with the lowest NSC reserves.</p><h3>Abstract</h3><p>Vegetative and reproductive growth and storage are major carbon sinks in fruit trees; however, little is known about their mutual seasonal coordination. In this study, we monitored growth dynamics of trunks, fruits and current-year shoots together with the concentration of non-structural carbohydrates (NSC) in trees subjected to defoliation, early season flower thinning, mid-season fruit thinning and their respective combinations across the season. We found that defoliation had a negative effect on both trunk radial growth and annual fruit yield. Flower and fruit thinning caused lower fruit number per tree, but the individual fruits were larger resulting in a similar annual fruit yield among the treatments. Shoot extension growth was not significantly affected by the defoliation and flower and fruit thinning treatments. The concentration of non-structural carbohydrates was also similar across treatments. Modelled daily growth rates of shoots, fruits and trunks peaked sequentially one after another throughout the growing season with a delay of 15 and 18 days, respectively. The period of most intense growth of tree’s organs corresponded well with the lowest NSC reserves and a temporary depletion of starch in 1-year-old branches. Taken together, our study illustrates a tight temporal coordination of major carbon sinks and improves our understanding of sink/source relations of commercially important apple trees.</p></div>","PeriodicalId":805,"journal":{"name":"Trees","volume":"38 5","pages":"1109 - 1118"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00468-024-02539-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trees","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00468-024-02539-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Key message
The growth rates of current-year shoots, fruits and trunks in apple trees peak sequentially during the growing season. The period of most intense growth coincided with the lowest NSC reserves.
Abstract
Vegetative and reproductive growth and storage are major carbon sinks in fruit trees; however, little is known about their mutual seasonal coordination. In this study, we monitored growth dynamics of trunks, fruits and current-year shoots together with the concentration of non-structural carbohydrates (NSC) in trees subjected to defoliation, early season flower thinning, mid-season fruit thinning and their respective combinations across the season. We found that defoliation had a negative effect on both trunk radial growth and annual fruit yield. Flower and fruit thinning caused lower fruit number per tree, but the individual fruits were larger resulting in a similar annual fruit yield among the treatments. Shoot extension growth was not significantly affected by the defoliation and flower and fruit thinning treatments. The concentration of non-structural carbohydrates was also similar across treatments. Modelled daily growth rates of shoots, fruits and trunks peaked sequentially one after another throughout the growing season with a delay of 15 and 18 days, respectively. The period of most intense growth of tree’s organs corresponded well with the lowest NSC reserves and a temporary depletion of starch in 1-year-old branches. Taken together, our study illustrates a tight temporal coordination of major carbon sinks and improves our understanding of sink/source relations of commercially important apple trees.
期刊介绍:
Trees - Structure and Function publishes original articles on the physiology, biochemistry, functional anatomy, structure and ecology of trees and other woody plants. Also presented are articles concerned with pathology and technological problems, when they contribute to the basic understanding of structure and function of trees. In addition to original articles and short communications, the journal publishes reviews on selected topics concerning the structure and function of trees.