Alicia Rossi, Ashley Hilmas, Amber Josken, Matthew Dickerson, Kaitlin Detwiler
{"title":"Review of testing methods to inform materials selection in high-temperature structural applications","authors":"Alicia Rossi, Ashley Hilmas, Amber Josken, Matthew Dickerson, Kaitlin Detwiler","doi":"10.1111/ijac.14837","DOIUrl":null,"url":null,"abstract":"<p>Careful material selection is paramount to meet the significant challenges posed by harsh environments in advanced applications. Ceramic matrix composites (CMCs) have come to the forefront of consideration for many of these applications where environmental resistance needs to be combined with structural stability at high temperatures (1200°C+). Many gaps exist in understanding how material variations pose unique material and design challenges that affect the final performance in a particular application. Thorough materials testing at relevant temperatures is required for various candidate materials to realize an analytical approach to materials selection. This review will discuss mechanical and environmental tests and their use at high temperatures including tensile tests, flexure tests, lifetime testing methods, interlaminar tests, and environmentally relevant tests. Challenges for performing these tests at high temperatures and on CMCs will be discussed. A literature review will provide examples of state-of-the-art testing, and the test results from historical work and improvement opportunities will be addressed. This review aims to provide an overview of the current capabilities and practices for high-temperature testing and recommend best practices for performing high-temperature tests and interpreting and sharing the results and metadata with the larger community to expand the CMC material property database.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"3735-3770"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14837","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Careful material selection is paramount to meet the significant challenges posed by harsh environments in advanced applications. Ceramic matrix composites (CMCs) have come to the forefront of consideration for many of these applications where environmental resistance needs to be combined with structural stability at high temperatures (1200°C+). Many gaps exist in understanding how material variations pose unique material and design challenges that affect the final performance in a particular application. Thorough materials testing at relevant temperatures is required for various candidate materials to realize an analytical approach to materials selection. This review will discuss mechanical and environmental tests and their use at high temperatures including tensile tests, flexure tests, lifetime testing methods, interlaminar tests, and environmentally relevant tests. Challenges for performing these tests at high temperatures and on CMCs will be discussed. A literature review will provide examples of state-of-the-art testing, and the test results from historical work and improvement opportunities will be addressed. This review aims to provide an overview of the current capabilities and practices for high-temperature testing and recommend best practices for performing high-temperature tests and interpreting and sharing the results and metadata with the larger community to expand the CMC material property database.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;