Gate‐Modulated and Polarization‐Sensitive Photodetector Based on the MoS2/PdSe2 Out‐Of‐Plane Van Der Waals Heterostructure

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Optical Materials Pub Date : 2024-07-02 DOI:10.1002/adom.202401122
Chengdong Yin, Sixian He, Xiaofeng Fan, Yuke Xiao, Liancheng Zhao, Liming Gao
{"title":"Gate‐Modulated and Polarization‐Sensitive Photodetector Based on the MoS2/PdSe2 Out‐Of‐Plane Van Der Waals Heterostructure","authors":"Chengdong Yin, Sixian He, Xiaofeng Fan, Yuke Xiao, Liancheng Zhao, Liming Gao","doi":"10.1002/adom.202401122","DOIUrl":null,"url":null,"abstract":"Photodetectors with good polarization detection ability are promising in many applications, such as remote sensing imaging and environmental monitoring. However, the traditional polarization detection systems fall short in meeting integration demands of the integrated‐circuits field due to additional optical elements. The emerging 2D materials with in‐plane anisotropic structures provide a possible method to fabricate remarkable polarization detectors. Modulating the band structure by gate voltage is an important strategy for developing optoelectronic devices. Herein, a polarized photodetector based on PdSe<jats:sub>2</jats:sub>/MoS<jats:sub>2</jats:sub> out‐of‐plane heterojunction is fabricated. Due to its unique out‐of‐plane heterostructure, the device exhibits excellent photoresponse characteristics and polarization sensitivity, including an excellent responsivity of 10.19A/W, an extremely high external quantum efficiency of 2429%, a fast rise/decay time of 68/192 µs, and a high photocurrent anisotropy ratio of 3.09. Based on the adjustment of the built‐in electric field through gate voltage, the performance of the device can be accordingly modulated. As the gate voltage increases from −30 to 30 V, the responsivity gradually increases from 7.5 to 13A/W and the detectivity increases from 1.53 to 2.63 × 10<jats:sup>9</jats:sup>Jones. Finally, its olarization imaging ability is demonstrated at different polarization angles. The findings indicate that PdSe<jats:sub>2</jats:sub>/MoS<jats:sub>2</jats:sub> devices exhibit significant potential for polarized photoelectric detection.","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adom.202401122","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photodetectors with good polarization detection ability are promising in many applications, such as remote sensing imaging and environmental monitoring. However, the traditional polarization detection systems fall short in meeting integration demands of the integrated‐circuits field due to additional optical elements. The emerging 2D materials with in‐plane anisotropic structures provide a possible method to fabricate remarkable polarization detectors. Modulating the band structure by gate voltage is an important strategy for developing optoelectronic devices. Herein, a polarized photodetector based on PdSe2/MoS2 out‐of‐plane heterojunction is fabricated. Due to its unique out‐of‐plane heterostructure, the device exhibits excellent photoresponse characteristics and polarization sensitivity, including an excellent responsivity of 10.19A/W, an extremely high external quantum efficiency of 2429%, a fast rise/decay time of 68/192 µs, and a high photocurrent anisotropy ratio of 3.09. Based on the adjustment of the built‐in electric field through gate voltage, the performance of the device can be accordingly modulated. As the gate voltage increases from −30 to 30 V, the responsivity gradually increases from 7.5 to 13A/W and the detectivity increases from 1.53 to 2.63 × 109Jones. Finally, its olarization imaging ability is demonstrated at different polarization angles. The findings indicate that PdSe2/MoS2 devices exhibit significant potential for polarized photoelectric detection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 MoS2/PdSe2 平面外范德华异质结构的栅极调制和偏振敏感型光电探测器
具有良好偏振检测能力的光电探测器在遥感成像和环境监测等许多应用领域都大有可为。然而,由于需要额外的光学元件,传统的偏振检测系统无法满足集成电路领域的集成需求。具有面内各向异性结构的新兴二维材料为制造出色的偏振检测器提供了一种可能的方法。通过栅极电压调节带状结构是开发光电器件的一项重要策略。在此,我们制作了一种基于 PdSe2/MoS2 面外异质结的偏振光探测器。由于其独特的面外异质结构,该器件表现出优异的光响应特性和偏振灵敏度,包括 10.19A/W 的优异响应度、2429% 的极高外部量子效率、68/192 µs 的快速上升/衰减时间和 3.09 的高光电流各向异性比。通过栅极电压调节内置电场,可以相应地调节器件的性能。随着栅极电压从 -30 V 增加到 30 V,响应率从 7.5A/W 逐渐增加到 13A/W,检测率从 1.53 增加到 2.63 × 109Jones。最后,在不同的偏振角度下展示了其放大成像能力。研究结果表明,PdSe2/MoS2 器件在偏振光电探测方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
期刊最新文献
Control of Photoinduced Charge Transfer Through Selective Cyanation of Spirofluorene-Bridged N-Heterotriangulenes (Advanced Optical Materials 27/2024) Discovery of Living Optical Networks in Orchid Leaves as Inspiration for Light Harvesting and Redistribution in Soft, Curvilinear Material Formats (Advanced Optical Materials 27/2024) Masthead: (Advanced Optical Materials 27/2024) Synergistic Effects of Defects and Strain on Photoluminescence in Van der Waals Layered Crystal AgScP2S6 Nano-Size Effects on Decay Dynamics of Photo-Excited Polarons in CeO2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1