Efficient and Exact Multimarginal Optimal Transport with Pairwise Costs

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-06-07 DOI:10.1007/s10915-024-02572-8
Bohan Zhou, Matthew Parno
{"title":"Efficient and Exact Multimarginal Optimal Transport with Pairwise Costs","authors":"Bohan Zhou, Matthew Parno","doi":"10.1007/s10915-024-02572-8","DOIUrl":null,"url":null,"abstract":"<p>We address the numerical solution to multimarginal optimal transport (MMOT) with pairwise costs. MMOT, as a natural extension from the classical two-marginal optimal transport, has many important applications including image processing, density functional theory and machine learning, but lacks efficient and exact numerical methods. The popular entropy-regularized method may suffer numerical instability and blurring issues. Inspired by the back-and-forth method introduced by Jacobs and Léger, we investigate MMOT problems with pairwise costs. We show that such problems have a graphical representation and leverage this structure to develop a new computationally gradient ascent algorithm to solve the dual formulation of such MMOT problems. Our method produces accurate solutions which can be used for the regularization-free applications, including the computation of Wasserstein barycenters with high resolution imagery.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02572-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We address the numerical solution to multimarginal optimal transport (MMOT) with pairwise costs. MMOT, as a natural extension from the classical two-marginal optimal transport, has many important applications including image processing, density functional theory and machine learning, but lacks efficient and exact numerical methods. The popular entropy-regularized method may suffer numerical instability and blurring issues. Inspired by the back-and-forth method introduced by Jacobs and Léger, we investigate MMOT problems with pairwise costs. We show that such problems have a graphical representation and leverage this structure to develop a new computationally gradient ascent algorithm to solve the dual formulation of such MMOT problems. Our method produces accurate solutions which can be used for the regularization-free applications, including the computation of Wasserstein barycenters with high resolution imagery.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有成对成本的高效精确多边际优化运输
我们探讨了具有成对成本的多边际最优传输(MMOT)的数值解法。多边际最优传输是经典的双边际最优传输的自然延伸,在图像处理、密度泛函理论和机器学习等领域有许多重要应用,但缺乏高效精确的数值方法。流行的熵正则化方法可能存在数值不稳定性和模糊问题。受 Jacobs 和 Léger 提出的来回法启发,我们研究了具有成对代价的 MMOT 问题。我们发现此类问题具有图形表示法,并利用这种结构开发了一种新的计算梯度上升算法,用于求解此类 MMOT 问题的对偶形式。我们的方法能产生精确的解,可用于无正则化应用,包括利用高分辨率图像计算瓦瑟斯坦原点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1