{"title":"Solvation model effects on the static first hyperpolarizability of a push–pull π-conjugated molecule","authors":"Shih-I Lu, Bo-Cheng Wang","doi":"10.1002/jccs.202400059","DOIUrl":null,"url":null,"abstract":"<p>In this work, we presented the results of density functional theory calculations for the static first hyperpolarizability for one representative push–pull π-conjugated molecule, 2-dimethylamino-7-nitrofluorene, in six organic solvents (<i>p</i>-dioxane, chloroform, tetrahydrofuran, acetone, acetonitrile, and dimethylsulfoxide) spanning a large range of dielectric constant. The finite-field formalism was used to calculate the longitudinal component of the static first hyperpolarizability. The solvent effect was calculated using two distinct polarizable continuum solvation models: the linear response and the state-specific polarizable continuum models. The calculations demonstrated the existence of solvation model effects on the property of interest, which warranted further analysis. The two-level model was then employed to illustrate the impact of solvation model. Our findings suggested that the state-specific polarizable continuum model gave a decrease of the dipole moment of the excited state in high polarity solvent for a bathochromic molecule whose excited state should have a larger polarization than its ground state.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400059","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we presented the results of density functional theory calculations for the static first hyperpolarizability for one representative push–pull π-conjugated molecule, 2-dimethylamino-7-nitrofluorene, in six organic solvents (p-dioxane, chloroform, tetrahydrofuran, acetone, acetonitrile, and dimethylsulfoxide) spanning a large range of dielectric constant. The finite-field formalism was used to calculate the longitudinal component of the static first hyperpolarizability. The solvent effect was calculated using two distinct polarizable continuum solvation models: the linear response and the state-specific polarizable continuum models. The calculations demonstrated the existence of solvation model effects on the property of interest, which warranted further analysis. The two-level model was then employed to illustrate the impact of solvation model. Our findings suggested that the state-specific polarizable continuum model gave a decrease of the dipole moment of the excited state in high polarity solvent for a bathochromic molecule whose excited state should have a larger polarization than its ground state.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.