Xinxin Jin, Tongxin Zhang, Yuetong Hou, Roland Bol, Xiaojie Zhang, Min Zhang, Na Yu, Jun Meng, Hongtao Zou, Jingkuan Wang
{"title":"Review on the effects of biochar amendment on soil microorganisms and enzyme activity","authors":"Xinxin Jin, Tongxin Zhang, Yuetong Hou, Roland Bol, Xiaojie Zhang, Min Zhang, Na Yu, Jun Meng, Hongtao Zou, Jingkuan Wang","doi":"10.1007/s11368-024-03841-7","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>The multiple benefits of biochar use as a soil amendment has garnered global attention. Biochar addition is a crucial factor to improve soil biomass, soil enzyme activities, microbial biomass and improve soil nutrient utilization rate. However, the precise mechanism of effects of biochar addition on microbial community structure and diversity, as well as enzyme activity, remains unclear, especially for biochar obtained from different pyrolysis temperatures and variable quantities in which it is applied to soil.</p><h3 data-test=\"abstract-sub-heading\">Materials and methods</h3><p>We compiled and summarized the existing literature on the impacts of biochar on microorganisms and enzymes, with a specific on articles published over a five-year period (2018–2022). This review provides a comprehensive review of the relevant literature on enzyme activity, microbial diversity, community structure and abundance following biochar amendment in soil, and further elucidates the underlying mechanisms of biochar-induced effects on various factors.</p><h3 data-test=\"abstract-sub-heading\">Results and discussion</h3><p>The impact of biochar on soil microorganisms could be categorized into three aspects: (1) biochar, due to its porous structure and high surface area, functions as a sanctuary for soil microorganisms; (2) biochar provides essential elements such as carbon (C) and nitrogen (N) sources to soil microorganisms, and finally (3) biochar improves the survival conditions of soil microorganisms by modifying soil pH, CEC, aggregation, and enzyme activity. Importantly, biochar produced at lower pyrolysis temperatures provides valuable C and N for soil microorganisms. Whereas biochar obtained at higher pyrolysis temperatures contains much less active C and N. However, it still contributes to microbial nutrition through diverse mechanisms, e.g., nutrient immobilization and increased nutrients residence time through its bonding with soil labile C.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>This review found that the type of source material and pyrolysis temperature were the primary determinants in the impacts of biochar on soil microbial abundance, community structure, and diversity.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soils and Sediments","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11368-024-03841-7","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The multiple benefits of biochar use as a soil amendment has garnered global attention. Biochar addition is a crucial factor to improve soil biomass, soil enzyme activities, microbial biomass and improve soil nutrient utilization rate. However, the precise mechanism of effects of biochar addition on microbial community structure and diversity, as well as enzyme activity, remains unclear, especially for biochar obtained from different pyrolysis temperatures and variable quantities in which it is applied to soil.
Materials and methods
We compiled and summarized the existing literature on the impacts of biochar on microorganisms and enzymes, with a specific on articles published over a five-year period (2018–2022). This review provides a comprehensive review of the relevant literature on enzyme activity, microbial diversity, community structure and abundance following biochar amendment in soil, and further elucidates the underlying mechanisms of biochar-induced effects on various factors.
Results and discussion
The impact of biochar on soil microorganisms could be categorized into three aspects: (1) biochar, due to its porous structure and high surface area, functions as a sanctuary for soil microorganisms; (2) biochar provides essential elements such as carbon (C) and nitrogen (N) sources to soil microorganisms, and finally (3) biochar improves the survival conditions of soil microorganisms by modifying soil pH, CEC, aggregation, and enzyme activity. Importantly, biochar produced at lower pyrolysis temperatures provides valuable C and N for soil microorganisms. Whereas biochar obtained at higher pyrolysis temperatures contains much less active C and N. However, it still contributes to microbial nutrition through diverse mechanisms, e.g., nutrient immobilization and increased nutrients residence time through its bonding with soil labile C.
Conclusions
This review found that the type of source material and pyrolysis temperature were the primary determinants in the impacts of biochar on soil microbial abundance, community structure, and diversity.
期刊介绍:
The Journal of Soils and Sediments (JSS) is devoted to soils and sediments; it deals with contaminated, intact and disturbed soils and sediments. JSS explores both the common aspects and the differences between these two environmental compartments. Inter-linkages at the catchment scale and with the Earth’s system (inter-compartment) are an important topic in JSS. The range of research coverage includes the effects of disturbances and contamination; research, strategies and technologies for prediction, prevention, and protection; identification and characterization; treatment, remediation and reuse; risk assessment and management; creation and implementation of quality standards; international regulation and legislation.