{"title":"Environmentally Friendly Recovery of Li2CO3 from Spent Lithium-Ion Batteries by Oxidation and Selective Leaching Process","authors":"Ying Zheng, Zhe Yang, Zhaoyang Li, Guang Hu, Sha Liang, Wenbo Yu, Shushan Yuan, Huabo Duan, Liang Huang, Jingping Hu, Huijie Hou, Jiakuan Yang","doi":"10.1021/acsestengg.4c00134","DOIUrl":null,"url":null,"abstract":"The extraction of valuable metals from spent Ni–Co–Mn oxide (NCM) cathodes typically encounters the use of strong acids or alkalis, often leading to secondary pollution. Herein, an environmentally friendly recovery route for the selective extraction of lithium (Li) by using sodium persulfate (Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>) as the sole leaching agent was proposed. Under the optimized conditions, the leaching efficiency of Li achieved 98.02%, and the selective leaching efficiency of Li was 94.80%. Moreover, the lithium carbonate (Li<sub>2</sub>CO<sub>3</sub>) product was recovered from the Li-rich filtrate with a high purity of 99.5%. The mechanism of Li selective leaching was revealed by means of wet chemistry, kinetics, thermodynamics, and solid-phase analysis. During selective leaching, free radicals SO<sub>4</sub><sup>•–</sup> and <sup>•</sup>OH, hydron ion (H<sup>+</sup>), and sodium ion (Na<sup>+</sup>) were generated by Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>. These free radicals can increase the redox potential of the leaching system. Under these conditions, Co and Mn elements were both maintained in a high valence state and the cathode structure was collapsed, thus contributing to the leaching of Li. The proposed environmentally friendly recovery process of Li from spent NCM cathodes is promising for practical applications, offering significant economic benefits.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsestengg.4c00134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The extraction of valuable metals from spent Ni–Co–Mn oxide (NCM) cathodes typically encounters the use of strong acids or alkalis, often leading to secondary pollution. Herein, an environmentally friendly recovery route for the selective extraction of lithium (Li) by using sodium persulfate (Na2S2O8) as the sole leaching agent was proposed. Under the optimized conditions, the leaching efficiency of Li achieved 98.02%, and the selective leaching efficiency of Li was 94.80%. Moreover, the lithium carbonate (Li2CO3) product was recovered from the Li-rich filtrate with a high purity of 99.5%. The mechanism of Li selective leaching was revealed by means of wet chemistry, kinetics, thermodynamics, and solid-phase analysis. During selective leaching, free radicals SO4•– and •OH, hydron ion (H+), and sodium ion (Na+) were generated by Na2S2O8. These free radicals can increase the redox potential of the leaching system. Under these conditions, Co and Mn elements were both maintained in a high valence state and the cathode structure was collapsed, thus contributing to the leaching of Li. The proposed environmentally friendly recovery process of Li from spent NCM cathodes is promising for practical applications, offering significant economic benefits.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.