Improved homomorphic evaluation for hash function based on TFHE

IF 3.9 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Cybersecurity Pub Date : 2024-07-02 DOI:10.1186/s42400-024-00204-0
Benqiang Wei, Xianhui Lu
{"title":"Improved homomorphic evaluation for hash function based on TFHE","authors":"Benqiang Wei, Xianhui Lu","doi":"10.1186/s42400-024-00204-0","DOIUrl":null,"url":null,"abstract":"<p>Homomorphic evaluation of hash functions offers a solution to the challenge of data integrity authentication in the context of homomorphic encryption. The earliest attempt to achieve homomorphic evaluation of SHA-256 hash function was proposed by Mella and Susella (in: Cryptography and coding—14th IMA international conference, IMACC 2013. Lecture notes in computer science, vol 8308. Springer, Heidelberg, pp 28–44, 2013. https://doi.org/10.1007/978-3-642-45239-0_3.) based on the BGV scheme. Unfortunately, their implementation faced significant limitations due to the exceedingly high multiplicative depth, rendering it impractical. Recently, a homomorphic implementation of SHA-256 based on the TFHE scheme (Homomorphic evaluation of SHA-256. https://github.com/zama-ai/tfhe-rs/tree/main/tfhe/examples/sha256_bool) brings it from theory to reality, however, its current efficiency remains insufficient. In this paper, we revisit the homomorphic evaluation of the SHA-256 hash function in the context of TFHE, further reducing the reliance on gate bootstrapping and enhancing evaluation latency. Specifically, we primarily utilize ternary gates to reduce the number of gate bootstrappings required for logic functions in message expansion and addition of modulo <span>\\(2^{32}\\)</span> in iterative compression. Furthermore, we demonstrate that our optimization techniques are applicable to the Chinese commercial cryptographic hash SM3. Finally, we give specific comparative implementations based on the TFHE-rs library. Experiments demonstrate that our optimization techniques lead to an improvement of approximately 35–50% compared with the state-of-the-art result under different cores.</p>","PeriodicalId":36402,"journal":{"name":"Cybersecurity","volume":"4 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42400-024-00204-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Homomorphic evaluation of hash functions offers a solution to the challenge of data integrity authentication in the context of homomorphic encryption. The earliest attempt to achieve homomorphic evaluation of SHA-256 hash function was proposed by Mella and Susella (in: Cryptography and coding—14th IMA international conference, IMACC 2013. Lecture notes in computer science, vol 8308. Springer, Heidelberg, pp 28–44, 2013. https://doi.org/10.1007/978-3-642-45239-0_3.) based on the BGV scheme. Unfortunately, their implementation faced significant limitations due to the exceedingly high multiplicative depth, rendering it impractical. Recently, a homomorphic implementation of SHA-256 based on the TFHE scheme (Homomorphic evaluation of SHA-256. https://github.com/zama-ai/tfhe-rs/tree/main/tfhe/examples/sha256_bool) brings it from theory to reality, however, its current efficiency remains insufficient. In this paper, we revisit the homomorphic evaluation of the SHA-256 hash function in the context of TFHE, further reducing the reliance on gate bootstrapping and enhancing evaluation latency. Specifically, we primarily utilize ternary gates to reduce the number of gate bootstrappings required for logic functions in message expansion and addition of modulo \(2^{32}\) in iterative compression. Furthermore, we demonstrate that our optimization techniques are applicable to the Chinese commercial cryptographic hash SM3. Finally, we give specific comparative implementations based on the TFHE-rs library. Experiments demonstrate that our optimization techniques lead to an improvement of approximately 35–50% compared with the state-of-the-art result under different cores.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 TFHE 的哈希函数改进型同态评估
哈希函数的同态评估为同态加密背景下的数据完整性验证难题提供了解决方案。最早尝试对 SHA-256 哈希函数进行同态评估的是梅拉和苏塞拉(in:密码学与编码-第 14 届 IMA 国际会议,IMACC 2013。计算机科学讲义,第 8308 卷。Springer, Heidelberg, pp 28-44, 2013. https://doi.org/10.1007/978-3-642-45239-0_3.) 基于 BGV 方案。遗憾的是,由于乘法深度过高,他们的实现面临很大的局限性,使其变得不切实际。最近,基于 TFHE 方案的 SHA-256 同态实现(Homomorphic evaluation of SHA-256. https://github.com/zama-ai/tfhe-rs/tree/main/tfhe/examples/sha256_bool)将其从理论变为现实,但其目前的效率仍然不足。在本文中,我们在 TFHE 的背景下重新审视了 SHA-256 哈希函数的同态评估,进一步减少了对门引导的依赖,并提高了评估延迟。具体来说,我们主要利用三元门来减少信息扩展中逻辑函数和迭代压缩中模数(2^{32}\)加法所需的门引导次数。此外,我们还证明了我们的优化技术适用于中文商业加密哈希算法 SM3。最后,我们给出了基于 TFHE-rs 库的具体比较实现。实验证明,在不同内核下,我们的优化技术比最先进的结果提高了约 35-50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cybersecurity
Cybersecurity Computer Science-Information Systems
CiteScore
7.30
自引率
0.00%
发文量
77
审稿时长
9 weeks
期刊最新文献
Cloud EMRs auditing with decentralized (t, n)-threshold ownership transfer SIFT: Sifting file types—application of explainable artificial intelligence in cyber forensics Modelling user notification scenarios in privacy policies FLSec-RPL: a fuzzy logic-based intrusion detection scheme for securing RPL-based IoT networks against DIO neighbor suppression attacks New partial key exposure attacks on RSA with additive exponent blinding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1