Annika V. Herbert, Simon G. Haberle, Suzette G. A. Flantua, Ondrej Mottl, Jessica L. Blois, John W. Williams, Adrian George, Geoff S. Hope
{"title":"The Indo-Pacific Pollen Database – a Neotoma constituent database","authors":"Annika V. Herbert, Simon G. Haberle, Suzette G. A. Flantua, Ondrej Mottl, Jessica L. Blois, John W. Williams, Adrian George, Geoff S. Hope","doi":"10.5194/cp-2024-44","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The Indo-Pacific Pollen Database (IPPD) is the brainchild of the late Professor Geoffrey Hope, who gathered pollen records from across the region to ensure their preservation for future generations of palaeoecologists. This noble aim is now being fulfilled by integrating the IPPD into the online Neotoma Palaeoecology Database, making this compilation available for public use. Here we explore the database in depth and suggest directions for future research. The IPPD comprises 226 fossil pollen records, most postdating 20 ka, but some extending as far back as 50 ka or further. Over 80 % of the records are Australian, with a fairly even distribution between the different Australian geographical regions, the notable exception being Western Australia, which is only represented by 3 records. The records are also well distributed in modern climate space, the largest gap being in drier regions due to preservation issues. However, many of the records contain few samples or have fewer than 5 chronology control points, such as radiocarbon, luminescence or Pb-210 for the younger sequences. Average sedimentation rate for the whole database, counted as years per cm, is 64.8 yr/cm, with 61 % of the records having a rate of less than 50 yr/cm. The highest sedimentation rate by geographical region occurs on Australia’s east coast, while the lowest rates are from the Western Pacific. Overall, Australia has a higher sedimentation rate than the rest of the Indo-Pacific region. The IPPD offers many exciting research opportunities, such as examination of human impact on regional vegetation, contrasting first human arrival and colonisation, and assessment of rates of vegetation change during the Holocene. Merging the IPPD into Neotoma also facilitates inclusion of data from the Indo-Pacific region into global syntheses.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"30 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/cp-2024-44","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. The Indo-Pacific Pollen Database (IPPD) is the brainchild of the late Professor Geoffrey Hope, who gathered pollen records from across the region to ensure their preservation for future generations of palaeoecologists. This noble aim is now being fulfilled by integrating the IPPD into the online Neotoma Palaeoecology Database, making this compilation available for public use. Here we explore the database in depth and suggest directions for future research. The IPPD comprises 226 fossil pollen records, most postdating 20 ka, but some extending as far back as 50 ka or further. Over 80 % of the records are Australian, with a fairly even distribution between the different Australian geographical regions, the notable exception being Western Australia, which is only represented by 3 records. The records are also well distributed in modern climate space, the largest gap being in drier regions due to preservation issues. However, many of the records contain few samples or have fewer than 5 chronology control points, such as radiocarbon, luminescence or Pb-210 for the younger sequences. Average sedimentation rate for the whole database, counted as years per cm, is 64.8 yr/cm, with 61 % of the records having a rate of less than 50 yr/cm. The highest sedimentation rate by geographical region occurs on Australia’s east coast, while the lowest rates are from the Western Pacific. Overall, Australia has a higher sedimentation rate than the rest of the Indo-Pacific region. The IPPD offers many exciting research opportunities, such as examination of human impact on regional vegetation, contrasting first human arrival and colonisation, and assessment of rates of vegetation change during the Holocene. Merging the IPPD into Neotoma also facilitates inclusion of data from the Indo-Pacific region into global syntheses.
期刊介绍:
Climate of the Past (CP) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on the climate history of the Earth. CP covers all temporal scales of climate change and variability, from geological time through to multidecadal studies of the last century. Studies focusing mainly on present and future climate are not within scope.
The main subject areas are the following:
reconstructions of past climate based on instrumental and historical data as well as proxy data from marine and terrestrial (including ice) archives;
development and validation of new proxies, improvements of the precision and accuracy of proxy data;
theoretical and empirical studies of processes in and feedback mechanisms between all climate system components in relation to past climate change on all space scales and timescales;
simulation of past climate and model-based interpretation of palaeoclimate data for a better understanding of present and future climate variability and climate change.