{"title":"A series of climate oscillations around 8.2 ka revealed through multi-proxy speleothem records from North China","authors":"Pengzhen Duan, Hanying Li, Zhibang Ma, Jingyao Zhao, Xiyu Dong, Ashish Sinha, Peng Hu, Haiwei Zhang, Youfeng Ning, Guangyou Zhu, Hai Cheng","doi":"10.5194/cp-20-1401-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The 8.2 ka event has been extensively investigated as a remarkable single event but rarely considered as a part of multi-centennial climatic evolution. Here, we present absolutely dated speleothem multi-proxy records spanning 9.0–7.9 ka from Beijing in North China, near the northern limit of the East Asian summer monsoon (EASM) and thus sensitive to climate change, to provide evidence of the intensified multi-decadal climatic oscillations since 8.52 ka. Three extreme excursions characterized by inter-decadal consecutive δ18O excursions exceeding ±1σ are identified from 8.52 ka in our speleothem record. The earlier two are characterized by enriched 18O at ∼8.50 and 8.20 ka, respectively, suggesting a prolonged arid event, which is supported by the positive trend in δ13C values, increased trace element ratios, and lower growth rate. Following the 8.2 ka event, an excessive rebound immediately emerges in our δ18O and trace element records but moderate in the δ13C, probably suggesting pluvial conditions and nonlinear response of the local ecosystem. Following two similar severe droughts at 8.50 and 8.20 ka, the different behavior of δ13C suggests the recovering degree of resilient ecosystem responding to different rebounded rainfall intensity. A comparison with other high-resolution records suggests that the two droughts–one pluvial pattern between 8.52 and 8.0 ka is of global significance instead of being a regional phenomenon, and is causally linked to the slowdown and acceleration of the Atlantic Meridional Overturning Circulation that was further dominated by the freshwater injections in the North Atlantic.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"13 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/cp-20-1401-2024","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. The 8.2 ka event has been extensively investigated as a remarkable single event but rarely considered as a part of multi-centennial climatic evolution. Here, we present absolutely dated speleothem multi-proxy records spanning 9.0–7.9 ka from Beijing in North China, near the northern limit of the East Asian summer monsoon (EASM) and thus sensitive to climate change, to provide evidence of the intensified multi-decadal climatic oscillations since 8.52 ka. Three extreme excursions characterized by inter-decadal consecutive δ18O excursions exceeding ±1σ are identified from 8.52 ka in our speleothem record. The earlier two are characterized by enriched 18O at ∼8.50 and 8.20 ka, respectively, suggesting a prolonged arid event, which is supported by the positive trend in δ13C values, increased trace element ratios, and lower growth rate. Following the 8.2 ka event, an excessive rebound immediately emerges in our δ18O and trace element records but moderate in the δ13C, probably suggesting pluvial conditions and nonlinear response of the local ecosystem. Following two similar severe droughts at 8.50 and 8.20 ka, the different behavior of δ13C suggests the recovering degree of resilient ecosystem responding to different rebounded rainfall intensity. A comparison with other high-resolution records suggests that the two droughts–one pluvial pattern between 8.52 and 8.0 ka is of global significance instead of being a regional phenomenon, and is causally linked to the slowdown and acceleration of the Atlantic Meridional Overturning Circulation that was further dominated by the freshwater injections in the North Atlantic.
期刊介绍:
Climate of the Past (CP) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on the climate history of the Earth. CP covers all temporal scales of climate change and variability, from geological time through to multidecadal studies of the last century. Studies focusing mainly on present and future climate are not within scope.
The main subject areas are the following:
reconstructions of past climate based on instrumental and historical data as well as proxy data from marine and terrestrial (including ice) archives;
development and validation of new proxies, improvements of the precision and accuracy of proxy data;
theoretical and empirical studies of processes in and feedback mechanisms between all climate system components in relation to past climate change on all space scales and timescales;
simulation of past climate and model-based interpretation of palaeoclimate data for a better understanding of present and future climate variability and climate change.