Stuart Umbo, Franziska Lechleitner, Thomas Opel, Sevasti Modestou, Tobias Braun, Anton Vaks, Gideon Henderson, Pete Scott, Alexander Osintzev, Alexandr Kononov, Irina Adrian, Yuri Dublyansky, Alena Giesche, Sebastian Breitenbach
{"title":"Speleothem evidence for late Miocene extreme Arctic amplification – an analogue for near future anthropogenic climate change?","authors":"Stuart Umbo, Franziska Lechleitner, Thomas Opel, Sevasti Modestou, Tobias Braun, Anton Vaks, Gideon Henderson, Pete Scott, Alexander Osintzev, Alexandr Kononov, Irina Adrian, Yuri Dublyansky, Alena Giesche, Sebastian Breitenbach","doi":"10.5194/egusphere-2024-1691","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The Miocene provides an excellent climatic analogue for near future anthropogenic warming, with atmospheric CO<sub>2</sub> concentrations and global average temperatures similar to those projected for the coming century. However, the magnitude of Miocene Arctic warming remains unclear due to the scarcity of reliable proxy data. Here we use stable oxygen isotope and trace element analyses, alongside clumped isotope and fluid inclusion palaeothermometry of speleothems to reconstruct palaeo-environmental conditions near the Siberian Arctic coast during the late Tortonian (8.68 ± 0.09 Ma). Stable oxygen isotope records suggest warmer than present temperatures. This is supported by temperature estimates based on clumped isotopes and fluid inclusions giving mean annual air temperatures between +6.6 and +11.1 °C, compared with -12.3 °C today. Trace elements records reveal a highly seasonal hydrological environment. Our estimate of >18 °C of Arctic warming supports the wider consensus of a warmer-than-present Miocene and provides a rare paleo-analogue for future Arctic amplification under high emissions scenarios. The reconstructed increase in mean surface temperature far exceeds those projected in fully coupled global climate models, even under extreme emissions scenarios. Given that climate models have consistently underestimated the extent of recent Arctic amplification, our proxy data suggest Arctic warming may exceed current projections. If Arctic warming by 2100 matches our late Miocene estimates, it would have large-scale impacts on global climate, including extensive thawing of Siberian permafrost – a vast fossil carbon store.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"73 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1691","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. The Miocene provides an excellent climatic analogue for near future anthropogenic warming, with atmospheric CO2 concentrations and global average temperatures similar to those projected for the coming century. However, the magnitude of Miocene Arctic warming remains unclear due to the scarcity of reliable proxy data. Here we use stable oxygen isotope and trace element analyses, alongside clumped isotope and fluid inclusion palaeothermometry of speleothems to reconstruct palaeo-environmental conditions near the Siberian Arctic coast during the late Tortonian (8.68 ± 0.09 Ma). Stable oxygen isotope records suggest warmer than present temperatures. This is supported by temperature estimates based on clumped isotopes and fluid inclusions giving mean annual air temperatures between +6.6 and +11.1 °C, compared with -12.3 °C today. Trace elements records reveal a highly seasonal hydrological environment. Our estimate of >18 °C of Arctic warming supports the wider consensus of a warmer-than-present Miocene and provides a rare paleo-analogue for future Arctic amplification under high emissions scenarios. The reconstructed increase in mean surface temperature far exceeds those projected in fully coupled global climate models, even under extreme emissions scenarios. Given that climate models have consistently underestimated the extent of recent Arctic amplification, our proxy data suggest Arctic warming may exceed current projections. If Arctic warming by 2100 matches our late Miocene estimates, it would have large-scale impacts on global climate, including extensive thawing of Siberian permafrost – a vast fossil carbon store.
期刊介绍:
Climate of the Past (CP) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on the climate history of the Earth. CP covers all temporal scales of climate change and variability, from geological time through to multidecadal studies of the last century. Studies focusing mainly on present and future climate are not within scope.
The main subject areas are the following:
reconstructions of past climate based on instrumental and historical data as well as proxy data from marine and terrestrial (including ice) archives;
development and validation of new proxies, improvements of the precision and accuracy of proxy data;
theoretical and empirical studies of processes in and feedback mechanisms between all climate system components in relation to past climate change on all space scales and timescales;
simulation of past climate and model-based interpretation of palaeoclimate data for a better understanding of present and future climate variability and climate change.