Permian thermally-induced shear of the Cossato-Mergozzo-Brissago shear zone in the W-Southalpine basement, Italy: new petrological, geochemical and U–Pb geochronological constraints from the amphibolite-facies units of the Strona Ceneri Border Zone
F. Arboit, A. Decarlis, S. Ferrando, A. Maffeis, S. De Bernardi, A. Ceriani
{"title":"Permian thermally-induced shear of the Cossato-Mergozzo-Brissago shear zone in the W-Southalpine basement, Italy: new petrological, geochemical and U–Pb geochronological constraints from the amphibolite-facies units of the Strona Ceneri Border Zone","authors":"F. Arboit, A. Decarlis, S. Ferrando, A. Maffeis, S. De Bernardi, A. Ceriani","doi":"10.1007/s00531-024-02435-5","DOIUrl":null,"url":null,"abstract":"<p>The onset of the Cossato-Mergozzo-Brissago shear zone within the Strona Ceneri Border Zone in the W-Southalpine basement (Italy) and its role in the collapse of the Variscan crust have been the subject of considerable controversy. A set of new petrographic, geochemical and geochronological data from a suite of syn-kinematic migmatitic paragneiss and amphibolites in between the upper and lower crustal sections of the W-Southalpine basement provide new evidence on the thermo-mechanical role played by the middle crust in the evolution of the Permian Southalpine basement. The petrological investigation of these amphibolite-facies rocks and U–Pb ages from monazite crystals, occurring in distinct microstructural positions, provide new <i>P–T-t</i> constraints on the late-Paleozoic tectono-thermal evolution of the Variscan middle crust. The SCBZ units recorded tectonic events from a possible Early Silurian Cenerian (ca. 440 Ma) overprint onto the proto-sedimentary units of the Southalpine basement to the Mid-Permian (ca. 285 Ma) syn-kinematic partial melting event developed close to the CMB shear zone. Phase equilibria modeling is used to constrain the metamorphic conditions recorded by this section of the Variscan basement. Pressure–temperature (<i>P–T</i>) isochemical phase diagrams show that, after the ca. 330 Ma Variscan metamorphic peak at <i>P</i> ≅ 4 kbar and <i>T</i> < 630 °C, the SCBZ paragneiss experienced isobaric heating up to 700–720 °C at ca. 285 Ma, which led to the formation of a syn-kinematic partial melting event coeval to the emplacement of the Mafic Complex in the lower Ivrea-Verbano Zone. These new geochronological and petrological constraints on the SCBZ paragneiss seem to corroborate the hypothesis that the transition from the stage of mature Variscan orogen to the stage of its collapse developed in the Permian, at ca. 285 Ma. Thus, we argue that the orogenic collapse was probably driven by the rheological weakening of the mid-crustal SCBZ units induced by their syn-tectonic partial melting and, ultimately, by the coeval thermal perturbation of the crust due to the intrusion of the mafic igneous suite at the crust-mantle boundary.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":13845,"journal":{"name":"International Journal of Earth Sciences","volume":"31 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00531-024-02435-5","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The onset of the Cossato-Mergozzo-Brissago shear zone within the Strona Ceneri Border Zone in the W-Southalpine basement (Italy) and its role in the collapse of the Variscan crust have been the subject of considerable controversy. A set of new petrographic, geochemical and geochronological data from a suite of syn-kinematic migmatitic paragneiss and amphibolites in between the upper and lower crustal sections of the W-Southalpine basement provide new evidence on the thermo-mechanical role played by the middle crust in the evolution of the Permian Southalpine basement. The petrological investigation of these amphibolite-facies rocks and U–Pb ages from monazite crystals, occurring in distinct microstructural positions, provide new P–T-t constraints on the late-Paleozoic tectono-thermal evolution of the Variscan middle crust. The SCBZ units recorded tectonic events from a possible Early Silurian Cenerian (ca. 440 Ma) overprint onto the proto-sedimentary units of the Southalpine basement to the Mid-Permian (ca. 285 Ma) syn-kinematic partial melting event developed close to the CMB shear zone. Phase equilibria modeling is used to constrain the metamorphic conditions recorded by this section of the Variscan basement. Pressure–temperature (P–T) isochemical phase diagrams show that, after the ca. 330 Ma Variscan metamorphic peak at P ≅ 4 kbar and T < 630 °C, the SCBZ paragneiss experienced isobaric heating up to 700–720 °C at ca. 285 Ma, which led to the formation of a syn-kinematic partial melting event coeval to the emplacement of the Mafic Complex in the lower Ivrea-Verbano Zone. These new geochronological and petrological constraints on the SCBZ paragneiss seem to corroborate the hypothesis that the transition from the stage of mature Variscan orogen to the stage of its collapse developed in the Permian, at ca. 285 Ma. Thus, we argue that the orogenic collapse was probably driven by the rheological weakening of the mid-crustal SCBZ units induced by their syn-tectonic partial melting and, ultimately, by the coeval thermal perturbation of the crust due to the intrusion of the mafic igneous suite at the crust-mantle boundary.
期刊介绍:
The International Journal of Earth Sciences publishes process-oriented original and review papers on the history of the earth, including
- Dynamics of the lithosphere
- Tectonics and volcanology
- Sedimentology
- Evolution of life
- Marine and continental ecosystems
- Global dynamics of physicochemical cycles
- Mineral deposits and hydrocarbons
- Surface processes.