{"title":"From Waste to Wealth: Current Advances in Recycling Technologies for Metal Recovery from Vanadium-Titanium Magnetite Tailings","authors":"Cheng Hu, Zhendong Yang, Miao He, Yazhi Zhan, Zhenyu Zhang, Cong Peng, Li Zeng, Yonghong Liu, Zhaoyue Yang, Huaqun Yin, Zhenghua Liu","doi":"10.1007/s40831-024-00847-w","DOIUrl":null,"url":null,"abstract":"<p>The burgeoning accumulation of vanadium-titanium magnetite tailings (VTMT) presents a dual challenge of environmental hazard and loss of valuable metal resources. This review arrives at a crucial juncture in global efforts towards a circular economy, focusing on innovative and effective metal recovery technologies. We explore the forefront of recycling methodologies, including suspension magnetization roasting, chlorination roasting, hydrometallurgical methods, and emerging approaches like MnO<sub>2</sub> roasting, magnesia and calcium roasting, and microwave oxidation roasting. Our analysis juxtaposes these advanced methods against traditional techniques, emphasizing their superior environmental and resource recovery benefits. Despite promising advancements, these technologies are still in nascent stages, each presenting unique merits and limitations that necessitate further research. This paper delves into the future trajectory of VTMT recycling, emphasizing the integration of technological innovation with environmental and resource stewardship. By tackling the specific challenges of VTMT, we underscore the urgency for holistic, efficient, and eco-friendly solutions. The future of VTMT metal recovery hinges on the progressive refinement and amalgamation of these technologies, underscored by a commitment to balancing ecological concerns with societal demands.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00847-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The burgeoning accumulation of vanadium-titanium magnetite tailings (VTMT) presents a dual challenge of environmental hazard and loss of valuable metal resources. This review arrives at a crucial juncture in global efforts towards a circular economy, focusing on innovative and effective metal recovery technologies. We explore the forefront of recycling methodologies, including suspension magnetization roasting, chlorination roasting, hydrometallurgical methods, and emerging approaches like MnO2 roasting, magnesia and calcium roasting, and microwave oxidation roasting. Our analysis juxtaposes these advanced methods against traditional techniques, emphasizing their superior environmental and resource recovery benefits. Despite promising advancements, these technologies are still in nascent stages, each presenting unique merits and limitations that necessitate further research. This paper delves into the future trajectory of VTMT recycling, emphasizing the integration of technological innovation with environmental and resource stewardship. By tackling the specific challenges of VTMT, we underscore the urgency for holistic, efficient, and eco-friendly solutions. The future of VTMT metal recovery hinges on the progressive refinement and amalgamation of these technologies, underscored by a commitment to balancing ecological concerns with societal demands.
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.