Quantum error correction for heavy hexagonal code using deep reinforcement learning with policy reuse

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Quantum Information Processing Pub Date : 2024-06-25 DOI:10.1007/s11128-024-04377-y
Yuxin Ji, Qinghui Chen, Rui Wang, Naihua Ji, Hongyang Ma
{"title":"Quantum error correction for heavy hexagonal code using deep reinforcement learning with policy reuse","authors":"Yuxin Ji, Qinghui Chen, Rui Wang, Naihua Ji, Hongyang Ma","doi":"10.1007/s11128-024-04377-y","DOIUrl":null,"url":null,"abstract":"<p>Quantum error correction techniques are important for implementing fault-tolerant quantum computation, and topological quantum error correcting codes provide feasibility for implementing large-scale fault-tolerant quantum computation. Here, we propose a deep reinforcement learning framework for implementing quantum error correction algorithms for errors on heavy hexagonal codes. Specifically, we construct the double deep <i>Q</i> learning model with policy reuse method, so that the decoding agent does not have to explore the learning from scratch when dealing with new error syndrome, but instead reuses past policies, which can reduce the computational complexity. And the double deep <i>Q</i> network can avoid the problem of threshold being overestimated and get the true decoding threshold. Our experimental results show that the error correction accuracy of our decoder can reach 91.86%. Different thresholds are obtained according to the code distance, which is 0.0058 when the code distance is 3, 5, 7, and 0.0065 when the code distance is 5, 7, 9, both higher than that of the classical minimum weight perfect matching decoder. Compared to the threshold of the MWPM decoder under the depolarizing noise model, the threshold of our decoder is improved by 32.63%, which enables better fault-tolerant quantum computation.</p>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11128-024-04377-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum error correction techniques are important for implementing fault-tolerant quantum computation, and topological quantum error correcting codes provide feasibility for implementing large-scale fault-tolerant quantum computation. Here, we propose a deep reinforcement learning framework for implementing quantum error correction algorithms for errors on heavy hexagonal codes. Specifically, we construct the double deep Q learning model with policy reuse method, so that the decoding agent does not have to explore the learning from scratch when dealing with new error syndrome, but instead reuses past policies, which can reduce the computational complexity. And the double deep Q network can avoid the problem of threshold being overestimated and get the true decoding threshold. Our experimental results show that the error correction accuracy of our decoder can reach 91.86%. Different thresholds are obtained according to the code distance, which is 0.0058 when the code distance is 3, 5, 7, and 0.0065 when the code distance is 5, 7, 9, both higher than that of the classical minimum weight perfect matching decoder. Compared to the threshold of the MWPM decoder under the depolarizing noise model, the threshold of our decoder is improved by 32.63%, which enables better fault-tolerant quantum computation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用策略重用的深度强化学习实现重六边形编码的量子纠错
量子纠错技术对于实现容错量子计算非常重要,而拓扑量子纠错码为实现大规模容错量子计算提供了可行性。在此,我们提出了一种深度强化学习框架,用于实现重六边形编码错误的量子纠错算法。具体来说,我们利用策略重用方法构建了双深度 Q 学习模型,这样解码代理在处理新的错误综合征时就不必从头开始探索学习,而是可以重用过去的策略,从而降低计算复杂度。而且双深度 Q 网络可以避免阈值被高估的问题,得到真实的解码阈值。实验结果表明,我们的解码器的纠错准确率可达 91.86%。根据码距的不同,阈值也不同,当码距为 3、5、7 时,阈值为 0.0058;当码距为 5、7、9 时,阈值为 0.0065,均高于经典最小权重完全匹配解码器的阈值。与去极化噪声模型下的 MWPM 解码器阈值相比,我们的解码器阈值提高了 32.63%,从而实现了更好的容错量子计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
期刊最新文献
General measurements with limited resources and their application to quantum unambiguous state discrimination Quantum related-key differential cryptanalysis An inequality for entangled qutrits in SU(3) basis Hardware efficient decomposition of the Laplace operator and its application to the Helmholtz and the Poisson equation on quantum computer Photonic communications with quadrature-amplitude modulated quantum coherent states in alternated and dual polarizations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1