{"title":"Combined Analysis of the Metabolome and Transcriptome Sheds New Light on the Mechanisms of Seed Maturation in Amorphophallus muelleri","authors":"Yongteng Zhao, Min Yang, Ying Qi, Penghua Gao, Yanguo Ke, Jiani Liu, Huanyu Wei, Lifang Li, Hongkun Pan, Feiyan Huang, Lei Yu","doi":"10.1007/s00344-024-11390-z","DOIUrl":null,"url":null,"abstract":"<p><i>Amorphophallus muelleri,</i> a naturally occurring variant of the commercially valuable <i>Amorphophallus</i> species grown in Southeast Asia, stands out for its desirable traits: high konjac glucomannan (KGM) content, apomictic properties, and strong disease resistance. However, the mechanisms governing KGM maturation and biosynthesis within <i>A. muelleri</i> seeds remain poorly understood. Accordingly, wide-targeted metabolomics and RNA-seq were used in the present study to analyze differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs). Importantly, we sought to identify changes during <i>A. muelleri</i> seed maturation and KGM biosynthesis. Our findings indicated that DAMs associated with amino acids and secondary metabolites were elevated in mature seeds. Moreover, the expression of several genes was also upregulated, including those involved in flavonoid biosynthesis and plant hormone signal transduction pathways, specifically <i>TPS5</i>, <i>TPS6</i>, <i>C4H</i> (<i>CYP73A12</i>), and key genes encoding auxin and abscisic acid (ABA) synthesis (<i>IAA10</i>, <i>ARF11</i>, <i>SAPK7</i>). Our findings suggest that these genes play positive roles in regulating seed maturation. Additionally, seven genes encoding key enzymes involved in KGM biosynthesis were upregulated during the first two stages of seed maturation compared to the third stage of seed ripening. This indicates a potential correlation between KGM content and the expression of these genes at the post-transcript level. Finally, a strong correlation was identified between key DAMs and DEGs. Collectively, these results provide valuable insights for researchers seeking to understand the molecular mechanisms underlying <i>A</i>. <i>muelleri</i> seed maturation and KGM synthesis.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":"22 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00344-024-11390-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Amorphophallus muelleri, a naturally occurring variant of the commercially valuable Amorphophallus species grown in Southeast Asia, stands out for its desirable traits: high konjac glucomannan (KGM) content, apomictic properties, and strong disease resistance. However, the mechanisms governing KGM maturation and biosynthesis within A. muelleri seeds remain poorly understood. Accordingly, wide-targeted metabolomics and RNA-seq were used in the present study to analyze differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs). Importantly, we sought to identify changes during A. muelleri seed maturation and KGM biosynthesis. Our findings indicated that DAMs associated with amino acids and secondary metabolites were elevated in mature seeds. Moreover, the expression of several genes was also upregulated, including those involved in flavonoid biosynthesis and plant hormone signal transduction pathways, specifically TPS5, TPS6, C4H (CYP73A12), and key genes encoding auxin and abscisic acid (ABA) synthesis (IAA10, ARF11, SAPK7). Our findings suggest that these genes play positive roles in regulating seed maturation. Additionally, seven genes encoding key enzymes involved in KGM biosynthesis were upregulated during the first two stages of seed maturation compared to the third stage of seed ripening. This indicates a potential correlation between KGM content and the expression of these genes at the post-transcript level. Finally, a strong correlation was identified between key DAMs and DEGs. Collectively, these results provide valuable insights for researchers seeking to understand the molecular mechanisms underlying A. muelleri seed maturation and KGM synthesis.
期刊介绍:
The Journal of Plant Growth Regulation is an international publication featuring original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research on various aspects of plant growth and development using hormonal, physiological, environmental, genetic, biophysical, developmental and/or molecular approaches.
The journal also publishes timely reviews on highly relevant areas and/or studies in plant growth and development, including interdisciplinary work with an emphasis on plant growth, plant hormones and plant pathology or abiotic stress.
In addition, the journal features occasional thematic issues with special guest editors, as well as brief communications describing novel techniques and meeting reports.
The journal is unlikely to accept manuscripts that are purely descriptive in nature or reports work with simple tissue culture without attempting to investigate the underlying mechanisms of plant growth regulation, those that focus exclusively on microbial communities, or deal with the (elicitation by plant hormones of) synthesis of secondary metabolites.