M.-H. Aumeunier, A. Juven, J. Gerardin, C-M. B. Cisse, S. Pamela, R. Miorelli, C. Reboud, F. Retailleau, J. Marot, F. Rigollet and L. Marot
{"title":"Surface temperature measurement from infrared synthetic diagnostic in preparation for ITER operations","authors":"M.-H. Aumeunier, A. Juven, J. Gerardin, C-M. B. Cisse, S. Pamela, R. Miorelli, C. Reboud, F. Retailleau, J. Marot, F. Rigollet and L. Marot","doi":"10.1088/1741-4326/ad5a1f","DOIUrl":null,"url":null,"abstract":"The protection of ITER in-vessel components and the plasma-wall interaction studies will be based on a large network of infrared (IR) cameras covering 70% of the tokamak. The surface temperature measurement from IR images remains challenging due to the presence of metallic targets, with changes in surface thermo-radiative properties (emissivity) and the presence of multiple reflections. The paper provides an overview of major progress to improve the interpretation of IR image and to get more reliable surface temperature from IR synthetic diagnostics. The paper presents the latest development of (1) the forward model to include the modelling of the edge localised modes and a new advanced camera that is better adapted to experimental data (2) the inverse model to retrieve the emissivity of the targets and the surface temperature from a neural network trained exclusively from synthetic IR images. Promising results have been obtained both from simulated test images with an estimated emissivity better than 0.05 and a surface temperature better than 10%, and from WEST experimental images of ITER-like wide-angle to filter reflection patterns.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"64 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad5a1f","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
The protection of ITER in-vessel components and the plasma-wall interaction studies will be based on a large network of infrared (IR) cameras covering 70% of the tokamak. The surface temperature measurement from IR images remains challenging due to the presence of metallic targets, with changes in surface thermo-radiative properties (emissivity) and the presence of multiple reflections. The paper provides an overview of major progress to improve the interpretation of IR image and to get more reliable surface temperature from IR synthetic diagnostics. The paper presents the latest development of (1) the forward model to include the modelling of the edge localised modes and a new advanced camera that is better adapted to experimental data (2) the inverse model to retrieve the emissivity of the targets and the surface temperature from a neural network trained exclusively from synthetic IR images. Promising results have been obtained both from simulated test images with an estimated emissivity better than 0.05 and a surface temperature better than 10%, and from WEST experimental images of ITER-like wide-angle to filter reflection patterns.
期刊介绍:
Nuclear Fusion publishes articles making significant advances to the field of controlled thermonuclear fusion. The journal scope includes:
-the production, heating and confinement of high temperature plasmas;
-the physical properties of such plasmas;
-the experimental or theoretical methods of exploring or explaining them;
-fusion reactor physics;
-reactor concepts; and
-fusion technologies.
The journal has a dedicated Associate Editor for inertial confinement fusion.