Feedback-voltage driven chaos in three-terminal spin-torque oscillator

Tomohiro Taniguchi
{"title":"Feedback-voltage driven chaos in three-terminal spin-torque oscillator","authors":"Tomohiro Taniguchi","doi":"arxiv-2406.10493","DOIUrl":null,"url":null,"abstract":"Recent observations of chaos in nanomagnet suggest a possibility of new\nspintronics applications such as random-number generator and neuromorphic\ncomputing. However, large amount of electric current and/or magnetic field are\nnecessary for the excitation of chaos, which are unsuitable for energy-saving\napplications. Here, we propose an excitation of chaos in three-terminal\nspin-torque oscillator (STO). The driving force of the chaos is\nvoltage-controlled magnetic anisotropy (VCMA) effect, which enables us to\nmanipulate magnetization dynamics without spending electric current or magnetic\nfield, and thus, energy efficient. In particular, we focus on the VCMA effect\ngenerated by feedback signal from the STO since feedback effect is known to be\neffective in exciting chaos in dynamical system. Solving the\nLandau-Lifshitz-Gilbert (LLG) equation numerically and applying temporal and\nstatistical analyses to its solution, the existence of the chaotic and\ntransient-chaotic magnetization dynamics driven by the feedback VCMA effect is\nidentified.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.10493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent observations of chaos in nanomagnet suggest a possibility of new spintronics applications such as random-number generator and neuromorphic computing. However, large amount of electric current and/or magnetic field are necessary for the excitation of chaos, which are unsuitable for energy-saving applications. Here, we propose an excitation of chaos in three-terminal spin-torque oscillator (STO). The driving force of the chaos is voltage-controlled magnetic anisotropy (VCMA) effect, which enables us to manipulate magnetization dynamics without spending electric current or magnetic field, and thus, energy efficient. In particular, we focus on the VCMA effect generated by feedback signal from the STO since feedback effect is known to be effective in exciting chaos in dynamical system. Solving the Landau-Lifshitz-Gilbert (LLG) equation numerically and applying temporal and statistical analyses to its solution, the existence of the chaotic and transient-chaotic magnetization dynamics driven by the feedback VCMA effect is identified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三端自旋扭矩振荡器中的反馈-电压驱动混沌
最近在纳米磁体中观察到的混沌现象表明了新闻电子学应用的可能性,如随机数发生器和神经形态计算。然而,激发混沌需要大量的电流和/或磁场,不适合节省能量的应用。在此,我们提出了一种在三端旋扭振荡器(STO)中激发混沌的方法。混沌的驱动力是电压控制磁各向异性效应(VCMA),它能让我们在不消耗电流或磁场的情况下操纵磁化动态,从而实现节能。由于众所周知反馈效应能有效激发动态系统中的混沌,因此我们特别关注由 STO 反馈信号产生的 VCMA 效应。通过数值求解兰道-利夫希茨-吉尔伯特(Landau-Lifshitz-Gilbert,LLG)方程,并对其解法进行时间和统计分析,确定了由反馈 VCMA 效应驱动的混沌和瞬态混沌磁化动力学的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tunneling Time for Walking Droplets on an Oscillating Liquid Surface Rydberg excitons in cuprous oxide: A two-particle system with classical chaos Disruption of exo-asteroids around white dwarfs and the release of dust particles in debris rings in co-orbital motion Machine-aided guessing and gluing of unstable periodic orbits Nonequilibrium dynamics of coupled oscillators under the shear-velocity boundary condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1