Universal Scale Laws for Colors and Patterns in Imagery

Rémi Michel, Mohamed Tamaazousti
{"title":"Universal Scale Laws for Colors and Patterns in Imagery","authors":"Rémi Michel, Mohamed Tamaazousti","doi":"arxiv-2406.08149","DOIUrl":null,"url":null,"abstract":"Distribution of colors and patterns in images is observed through cascades\nthat adjust spatial resolution and dynamics. Cascades of colors reveal the\nemergent universal property that Fully Colored Images (FCIs) of natural scenes\nadhere to the debated continuous linear log-scale law (slope $-2.00 \\pm 0.01$)\n(L1). Cascades of discrete $2 \\times 2$ patterns are derived from pixel squares\nreductions onto the seven unlabeled rotation-free textures (0000, 0001, 0011,\n0012, 0101, 0102, 0123). They exhibit an unparalleled universal entropy maximum\nof $1.74 \\pm 0.013$ at some dynamics regardless of spatial scale (L2). Patterns\nalso adhere to the Integral Fluctuation Theorem ($1.00 \\pm 0.01$) (L3), pivotal\nin studies of chaotic systems. Images with fewer colors exhibit quadratic shift\nand bias from L1 and L3 but adhere to L2. Randomized Hilbert fractals FCIs\nbetter match the laws than basic-to-AI-based simulations. Those results are of\ninterest in Neural Networks, out of equilibrium physics and spectral imagery.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.08149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distribution of colors and patterns in images is observed through cascades that adjust spatial resolution and dynamics. Cascades of colors reveal the emergent universal property that Fully Colored Images (FCIs) of natural scenes adhere to the debated continuous linear log-scale law (slope $-2.00 \pm 0.01$) (L1). Cascades of discrete $2 \times 2$ patterns are derived from pixel squares reductions onto the seven unlabeled rotation-free textures (0000, 0001, 0011, 0012, 0101, 0102, 0123). They exhibit an unparalleled universal entropy maximum of $1.74 \pm 0.013$ at some dynamics regardless of spatial scale (L2). Patterns also adhere to the Integral Fluctuation Theorem ($1.00 \pm 0.01$) (L3), pivotal in studies of chaotic systems. Images with fewer colors exhibit quadratic shift and bias from L1 and L3 but adhere to L2. Randomized Hilbert fractals FCIs better match the laws than basic-to-AI-based simulations. Those results are of interest in Neural Networks, out of equilibrium physics and spectral imagery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像中颜色和图案的通用比例法则
图像中颜色和图案的分布是通过调整空间分辨率和动态的级联来观察的。色彩级联揭示了自然场景的全彩色图像(FCIs)符合有争议的连续线性对数尺度定律(斜率为 $-2.00 \pm 0.01$)(L1)这一普遍特性。2 元乘以 2 元的离散图案级联是由像素平方还原到七种无标签无旋转纹理(0000, 0001, 0011,0012, 0101, 0102, 0123)上得到的。无论空间尺度(L2)如何,它们在某些动态范围内都表现出了无与伦比的普遍熵最大值 1.74 (/pm 0.013$)。图案还符合积分波动定理(1.00 \pm 0.01$)(L3),这在混沌系统研究中至关重要。颜色较少的图像会出现二次偏移,偏离 L1 和 L3,但符合 L2。随机希尔伯特分形 FCI 比基于基础到人工智能的模拟更符合规律。这些结果对神经网络、失衡物理学和光谱图像都很有意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tunneling Time for Walking Droplets on an Oscillating Liquid Surface Rydberg excitons in cuprous oxide: A two-particle system with classical chaos Disruption of exo-asteroids around white dwarfs and the release of dust particles in debris rings in co-orbital motion Machine-aided guessing and gluing of unstable periodic orbits Nonequilibrium dynamics of coupled oscillators under the shear-velocity boundary condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1