Optical Tweezer Arrays of Erbium Atoms

D. S. Grün, S. J. M. White, A. Ortu, A. Di Carli, H. Edri, M. Lepers, M. J. Mark, F. Ferlaino
{"title":"Optical Tweezer Arrays of Erbium Atoms","authors":"D. S. Grün, S. J. M. White, A. Ortu, A. Di Carli, H. Edri, M. Lepers, M. J. Mark, F. Ferlaino","doi":"arxiv-2406.16146","DOIUrl":null,"url":null,"abstract":"We present the first successful trapping of single erbium atoms in an array\nof optical tweezers. Using a single narrow-line optical transition, we achieve\ndeep cooling for direct tweezer loading, pairwise ejection, and continous\nimaging without additional recoil suppression techniques. Our tweezer\nwavelength choice enables us to reach the magic trapping condition by tuning\nthe ellipticity of the trapping light. Additionally, we implement an ultrafast\nhigh-fidelity fluorescence imaging scheme using a broad transition, allowing\ntime-resolved study of the tweezer population dynamics from many to single\natoms during light-assisted collisions. In particular, we extract a\npair-ejection rate that qualitatively agrees with the semiclassical predictions\nby the Gallagher-Pritchard model. This work represents a promising starting\npoint for the exploration of erbium as a powerful resource for quantum\nsimulation in optical tweezers.","PeriodicalId":501521,"journal":{"name":"arXiv - PHYS - Quantum Gases","volume":"189 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.16146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present the first successful trapping of single erbium atoms in an array of optical tweezers. Using a single narrow-line optical transition, we achieve deep cooling for direct tweezer loading, pairwise ejection, and continous imaging without additional recoil suppression techniques. Our tweezer wavelength choice enables us to reach the magic trapping condition by tuning the ellipticity of the trapping light. Additionally, we implement an ultrafast high-fidelity fluorescence imaging scheme using a broad transition, allowing time-resolved study of the tweezer population dynamics from many to single atoms during light-assisted collisions. In particular, we extract a pair-ejection rate that qualitatively agrees with the semiclassical predictions by the Gallagher-Pritchard model. This work represents a promising starting point for the exploration of erbium as a powerful resource for quantum simulation in optical tweezers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铒原子光镊阵列
我们首次成功地在光学镊子阵列中捕获了单个铒原子。利用单个窄线光学转换,我们实现了镊子直接装载、成对弹射和连续成像的精密冷却,而无需额外的反冲抑制技术。我们对镊子波长的选择使我们能够通过调整捕获光的椭圆度来达到神奇的捕获条件。此外,我们还利用宽泛的转变实现了超快高保真荧光成像方案,从而能够在光辅助碰撞过程中对从多原子到单原子的镊子群体动态进行时间分辨研究。特别是,我们提取的成对抛射率与 Gallagher-Pritchard 模型的半经典预测基本一致。这项工作为探索铒作为光镊定量模拟的强大资源提供了一个很好的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boundary-localized many-body bound states in the continuum Correlations of the Current Density in Many-Body Landau Level States Measurement resolution enhanced coherence for lattice fermions Finite temperature stability of quantized vortex structures in rotating Bose-Einstein condensates via complex Langevin simulation Josephson effect and self-trapping in helicoidal spin-orbit coupled Bose-Einstein condensates with optical lattices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1