Guanglei Zhao, Gaoge Dai, Bingkang Peng, Hailong Cui
{"title":"Adaptive Fault-tolerant Control of Platoons With Prescribed Tracking Performance","authors":"Guanglei Zhao, Gaoge Dai, Bingkang Peng, Hailong Cui","doi":"10.1007/s12555-023-0135-y","DOIUrl":null,"url":null,"abstract":"<p>This article investigates a heterogeneous vehicular platoon control problem, in which prescribed tracking performance can be achieved, it is assumed that the vehicle subjects to asymmetric nonlinear actuator saturation, dead-zone nonlinearity and actuator faults. Based on improved exponential spacing policy, an adaptive fault-tolerant sliding-mode control scheme is proposed to guarantee individual vehicle stability, string stability and traffic flow stability. The hypothesis that the spacing errors at initial time are zero is removed by employing the novel exponential spacing policy. Furthermore, to attenuate the harmful effects of actuator faults, saturation and dead-zone nonlinearity, a compensation system based on radial basis neural network (RBFNN) is established. Finally, the effectiveness of the proposed control scheme is verified by simulation results.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"14 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-023-0135-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigates a heterogeneous vehicular platoon control problem, in which prescribed tracking performance can be achieved, it is assumed that the vehicle subjects to asymmetric nonlinear actuator saturation, dead-zone nonlinearity and actuator faults. Based on improved exponential spacing policy, an adaptive fault-tolerant sliding-mode control scheme is proposed to guarantee individual vehicle stability, string stability and traffic flow stability. The hypothesis that the spacing errors at initial time are zero is removed by employing the novel exponential spacing policy. Furthermore, to attenuate the harmful effects of actuator faults, saturation and dead-zone nonlinearity, a compensation system based on radial basis neural network (RBFNN) is established. Finally, the effectiveness of the proposed control scheme is verified by simulation results.
期刊介绍:
International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE).
The journal covers three closly-related research areas including control, automation, and systems.
The technical areas include
Control Theory
Control Applications
Robotics and Automation
Intelligent and Information Systems
The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.