{"title":"YOLO-FGD: a fast lightweight PCB defect method based on FasterNet and the Gather-and-Distribute mechanism","authors":"Changxin Qin, Zhongyu Zhou","doi":"10.1007/s11554-024-01504-x","DOIUrl":null,"url":null,"abstract":"<p>With the rapid expansion of the electronics industry, the demand for high-quality printed circuit boards has surged. However, existing PCB defect detection methods suffer from various limitations, such as slow speeds, low accuracy, and restricted detection scope, often leading to false positives and negatives. To overcome these challenges, this paper presents YOLO-FGD, a novel detection model. YOLO-FGD replaces YOLOv5’s backbone network with FasterNet, significantly accelerating feature extraction. The Neck section adopts the Gather-and-Distribute mechanism, which enhances multiscale feature fusion for small targets through convolution and self-attention mechanisms. Integration of the C3_Faster feature extraction module effectively reduces the number of parameters and the number of FLOPs, accelerating the computations. Experiments on the PCB-DATASETS dataset show promising results: the mean average precision50 reaches 98.8%, the mean average precision50–95 reaches 57.2%, the computational load is reduced to 11.5 GFLOPs, and the model size is only 12.6 MB, meeting lightweight standards. These findings underscore the effectiveness of YOLO-FGD in efficiently detecting PCB defects, providing robust support for electronic manufacturing quality control.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"31 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01504-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid expansion of the electronics industry, the demand for high-quality printed circuit boards has surged. However, existing PCB defect detection methods suffer from various limitations, such as slow speeds, low accuracy, and restricted detection scope, often leading to false positives and negatives. To overcome these challenges, this paper presents YOLO-FGD, a novel detection model. YOLO-FGD replaces YOLOv5’s backbone network with FasterNet, significantly accelerating feature extraction. The Neck section adopts the Gather-and-Distribute mechanism, which enhances multiscale feature fusion for small targets through convolution and self-attention mechanisms. Integration of the C3_Faster feature extraction module effectively reduces the number of parameters and the number of FLOPs, accelerating the computations. Experiments on the PCB-DATASETS dataset show promising results: the mean average precision50 reaches 98.8%, the mean average precision50–95 reaches 57.2%, the computational load is reduced to 11.5 GFLOPs, and the model size is only 12.6 MB, meeting lightweight standards. These findings underscore the effectiveness of YOLO-FGD in efficiently detecting PCB defects, providing robust support for electronic manufacturing quality control.
期刊介绍:
Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed.
Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application.
It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system.
The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.