Sanjay Raju, S. Nandakishor, Sreerag K. Vivek, S. Don
{"title":"Deep Learning Techniques for Crater Detection on Lunar Surface Images from Chandrayaan-2 Satellite","authors":"Sanjay Raju, S. Nandakishor, Sreerag K. Vivek, S. Don","doi":"10.1007/s12524-024-01909-y","DOIUrl":null,"url":null,"abstract":"<p>Lunar exploration is pivotal in establishing a human presence on the Moon, and lunar crater detection plays a major role in this pursuit. The study is divided into two key phases: the creation of a specialized annotated dataset sourced from the Optical High-Resolution Camera on the Chandrayaan-2 satellite, and the evaluation of model performance using this dataset. Employing models such as FasterRCNN, YoloV5, and YoloV1, the investigation reveals the YoloV5 model’s superiority, achieving a precision of 92% and a recall of 83% for lunar crater detection. This finding constitutes a significant contribution to lunar exploration research.</p>","PeriodicalId":17510,"journal":{"name":"Journal of the Indian Society of Remote Sensing","volume":"191 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Society of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12524-024-01909-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lunar exploration is pivotal in establishing a human presence on the Moon, and lunar crater detection plays a major role in this pursuit. The study is divided into two key phases: the creation of a specialized annotated dataset sourced from the Optical High-Resolution Camera on the Chandrayaan-2 satellite, and the evaluation of model performance using this dataset. Employing models such as FasterRCNN, YoloV5, and YoloV1, the investigation reveals the YoloV5 model’s superiority, achieving a precision of 92% and a recall of 83% for lunar crater detection. This finding constitutes a significant contribution to lunar exploration research.
期刊介绍:
The aims and scope of the Journal of the Indian Society of Remote Sensing are to help towards advancement, dissemination and application of the knowledge of Remote Sensing technology, which is deemed to include photo interpretation, photogrammetry, aerial photography, image processing, and other related technologies in the field of survey, planning and management of natural resources and other areas of application where the technology is considered to be appropriate, to promote interaction among all persons, bodies, institutions (private and/or state-owned) and industries interested in achieving advancement, dissemination and application of the technology, to encourage and undertake research in remote sensing and related technologies and to undertake and execute all acts which shall promote all or any of the aims and objectives of the Indian Society of Remote Sensing.