{"title":"Foreground–background separation transformer for weakly supervised surface defect detection","authors":"Xiaoheng Jiang, Jian Feng, Feng Yan, Yang Lu, Quanhai Fa, Wenjie Zhang, Mingliang Xu","doi":"10.1007/s10845-024-02446-8","DOIUrl":null,"url":null,"abstract":"<p>In industrial scenarios, weakly supervised pixel-level defect detection methods leverage image-level labels for training, significantly reducing the effort required for manual annotation. However, existing methods suffer from confusion or incompleteness in predicting defect regions since defects usually show weak appearances that are similar to the background. To address this issue, we propose a foreground–background separation transformer (FBSFormer) for weakly supervised pixel-level defect detection. FBSFormer introduces a foreground–background separation (FBS) module, which utilizes the attention map to separate the foreground defect feature and background feature and pushes their distance intrinsically by learning with opposite labels. In addition, we present an attention-map refinement (AMR) module, which aims to generate a more accurate attention map to better guide the separation of defect and background features. During the inference stage, the refined attention map is combined with the class activation map (CAM) corresponding to the defect feature of FBS to generate the final result. Extensive experiments are conducted on three industrial surface defect datasets including DAGM 2007, KolektorSDD2, and Magnetic Tile. The results demonstrate that the proposed approach achieves outstanding performance compared to the state-of-the-art methods.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"179 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02446-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In industrial scenarios, weakly supervised pixel-level defect detection methods leverage image-level labels for training, significantly reducing the effort required for manual annotation. However, existing methods suffer from confusion or incompleteness in predicting defect regions since defects usually show weak appearances that are similar to the background. To address this issue, we propose a foreground–background separation transformer (FBSFormer) for weakly supervised pixel-level defect detection. FBSFormer introduces a foreground–background separation (FBS) module, which utilizes the attention map to separate the foreground defect feature and background feature and pushes their distance intrinsically by learning with opposite labels. In addition, we present an attention-map refinement (AMR) module, which aims to generate a more accurate attention map to better guide the separation of defect and background features. During the inference stage, the refined attention map is combined with the class activation map (CAM) corresponding to the defect feature of FBS to generate the final result. Extensive experiments are conducted on three industrial surface defect datasets including DAGM 2007, KolektorSDD2, and Magnetic Tile. The results demonstrate that the proposed approach achieves outstanding performance compared to the state-of-the-art methods.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.