{"title":"Tracer dynamics in the active random average process","authors":"Saikat Santra, Prashant Singh and Anupam Kundu","doi":"10.1088/1742-5468/ad485f","DOIUrl":null,"url":null,"abstract":"We investigate the dynamics of tracer particles in the random average process (RAP), a single-file system in one dimension. In addition to the position, every particle possesses an internal spin variable that can alternate between two values, ±1, at a constant rate γ. Physically, the value of dictates the direction of motion of the corresponding particle and, for finite γ, every particle performs non-Markovian active dynamics. Herein, we study the effect of this non-Markovian behavior in the fluctuations and correlations of the positions of tracer particles. We analytically show that the variance of the position of a tagged particle grows sub-diffusively as at large times for the quenched uniform initial conditions. While this sub-diffusive growth is identical to that of the Markovian/non-persistent RAP, the coefficient is rather different and bears the signature of the persistent motion of active particles through higher-point correlations (unlike in the Markovian case). Similarly, for the annealed (steady-state) initial conditions, we find that the variance scales as at large times, with the coefficient once again different from the non-persistent case. Although both ζq and individually depart from their Markovian counterparts, their ratio is still equal to , a condition observed for other diffusive single-file systems. This condition turns out to be true even in the strongly active regimes, as corroborated by extensive simulations and calculations. Finally, we study the correlation between the positions of two tagged particles in both quenched uniform and annealed initial conditions. We verify all our analytical results using extensive numerical simulations.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"228 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad485f","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the dynamics of tracer particles in the random average process (RAP), a single-file system in one dimension. In addition to the position, every particle possesses an internal spin variable that can alternate between two values, ±1, at a constant rate γ. Physically, the value of dictates the direction of motion of the corresponding particle and, for finite γ, every particle performs non-Markovian active dynamics. Herein, we study the effect of this non-Markovian behavior in the fluctuations and correlations of the positions of tracer particles. We analytically show that the variance of the position of a tagged particle grows sub-diffusively as at large times for the quenched uniform initial conditions. While this sub-diffusive growth is identical to that of the Markovian/non-persistent RAP, the coefficient is rather different and bears the signature of the persistent motion of active particles through higher-point correlations (unlike in the Markovian case). Similarly, for the annealed (steady-state) initial conditions, we find that the variance scales as at large times, with the coefficient once again different from the non-persistent case. Although both ζq and individually depart from their Markovian counterparts, their ratio is still equal to , a condition observed for other diffusive single-file systems. This condition turns out to be true even in the strongly active regimes, as corroborated by extensive simulations and calculations. Finally, we study the correlation between the positions of two tagged particles in both quenched uniform and annealed initial conditions. We verify all our analytical results using extensive numerical simulations.
期刊介绍:
JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged.
The journal covers different topics which correspond to the following keyword sections.
1. Quantum statistical physics, condensed matter, integrable systems
Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo
2. Classical statistical mechanics, equilibrium and non-equilibrium
Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo
3. Disordered systems, classical and quantum
Scientific Directors: Eduardo Fradkin and Riccardo Zecchina
4. Interdisciplinary statistical mechanics
Scientific Directors: Matteo Marsili and Riccardo Zecchina
5. Biological modelling and information
Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina