An efficient workflow for modelling high-dimensional spatial extremes

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Statistics and Computing Pub Date : 2024-06-19 DOI:10.1007/s11222-024-10448-y
Silius M. Vandeskog, Sara Martino, Raphaël Huser
{"title":"An efficient workflow for modelling high-dimensional spatial extremes","authors":"Silius M. Vandeskog, Sara Martino, Raphaël Huser","doi":"10.1007/s11222-024-10448-y","DOIUrl":null,"url":null,"abstract":"<p>We develop a comprehensive methodological workflow for Bayesian modelling of high-dimensional spatial extremes that lets us describe both weakening extremal dependence at increasing levels and changes in the type of extremal dependence class as a function of the distance between locations. This is achieved with a latent Gaussian version of the spatial conditional extremes model that allows for computationally efficient inference with <span>R-INLA</span>. Inference is made more robust using a post hoc adjustment method that accounts for possible model misspecification. This added robustness makes it possible to extract more information from the available data during inference using a composite likelihood. The developed methodology is applied to the modelling of extreme hourly precipitation from high-resolution radar data in Norway. Inference is performed quickly, and the resulting model fit successfully captures the main trends in the extremal dependence structure of the data. The post hoc adjustment is found to further improve model performance.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10448-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a comprehensive methodological workflow for Bayesian modelling of high-dimensional spatial extremes that lets us describe both weakening extremal dependence at increasing levels and changes in the type of extremal dependence class as a function of the distance between locations. This is achieved with a latent Gaussian version of the spatial conditional extremes model that allows for computationally efficient inference with R-INLA. Inference is made more robust using a post hoc adjustment method that accounts for possible model misspecification. This added robustness makes it possible to extract more information from the available data during inference using a composite likelihood. The developed methodology is applied to the modelling of extreme hourly precipitation from high-resolution radar data in Norway. Inference is performed quickly, and the resulting model fit successfully captures the main trends in the extremal dependence structure of the data. The post hoc adjustment is found to further improve model performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建立高维空间极值模型的高效工作流程
我们为高维空间极值的贝叶斯建模开发了一套全面的方法论工作流程,使我们既能描述极值依赖性在水平增加时的减弱,又能描述极值依赖性类型随地点间距离的变化而变化。这是通过空间条件极值模型的潜在高斯版本实现的,该模型允许使用 R-INLA 进行高效计算推断。推论采用事后调整方法,考虑到可能出现的模型规范错误,从而使推论更加稳健。由于增加了稳健性,因此在使用复合似然法进行推理时,可以从可用数据中提取更多信息。所开发的方法被应用于根据挪威的高分辨率雷达数据建立极端小时降水量模型。推理过程很快,得出的拟合模型成功捕捉到了数据极端依赖结构的主要趋势。事后调整可进一步提高模型性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
期刊最新文献
Accelerated failure time models with error-prone response and nonlinear covariates Sequential model identification with reversible jump ensemble data assimilation method Hidden Markov models for multivariate panel data Shrinkage for extreme partial least-squares Nonconvex Dantzig selector and its parallel computing algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1