Paul Lardet, Alain Coimbra, Lucas Terrei, ElMehdi Koutaiba, Renato Mole-Antoniazza, Gabriel Giovannelli
{"title":"An Empirical Correlation for Burning of Spruce Wood in Cone Calorimeter for Different Heat Fluxes","authors":"Paul Lardet, Alain Coimbra, Lucas Terrei, ElMehdi Koutaiba, Renato Mole-Antoniazza, Gabriel Giovannelli","doi":"10.1007/s10694-024-01603-y","DOIUrl":null,"url":null,"abstract":"<div><p>This article proposes an empirical expression to describe the pyrolysis and charring of spruce wood in bench-scale experiments for a wide range of incident heat fluxes. Spruce wood samples were exposed to a cone radiant heater oriented vertically with varying intensities, ranging from <span>\\(\\dot{q}_{\\text {cone}}^{''}\\)</span> = 22 kW m<span>\\(^{-2}\\)</span> to 93.5 kW m<span>\\(^{-2}\\)</span> over 53 test samples. The mass loss rate (MLR), the position of the char front and a preliminary additional heat source from smoldering or flaming combustion were experimentally determined. The experimental data were processed to express the burning rate as a function of heat flux and char front position. A grouping of the experimental curves was obtained, allowing to predict the MLR outcome over time regardless of the incident heat flux. A linear regression at the quasi-steady state regime allowed the determination of the fitting coefficients of the correlation, which ultimately correspond to the mass of volatiles produced per unit of energy input into the material. A comparison was made with theoretical analysis of the pyrolysis of charring materials from the literature, and the discrepancies with the proposed approach and its limitations were finally discussed. The main advantage of this approach is that it provides a generalized expression, requiring minimal input of material properties, which predicts the MLR change over time for any heat flux within engineering accuracy.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 6","pages":"3883 - 3902"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-024-01603-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes an empirical expression to describe the pyrolysis and charring of spruce wood in bench-scale experiments for a wide range of incident heat fluxes. Spruce wood samples were exposed to a cone radiant heater oriented vertically with varying intensities, ranging from \(\dot{q}_{\text {cone}}^{''}\) = 22 kW m\(^{-2}\) to 93.5 kW m\(^{-2}\) over 53 test samples. The mass loss rate (MLR), the position of the char front and a preliminary additional heat source from smoldering or flaming combustion were experimentally determined. The experimental data were processed to express the burning rate as a function of heat flux and char front position. A grouping of the experimental curves was obtained, allowing to predict the MLR outcome over time regardless of the incident heat flux. A linear regression at the quasi-steady state regime allowed the determination of the fitting coefficients of the correlation, which ultimately correspond to the mass of volatiles produced per unit of energy input into the material. A comparison was made with theoretical analysis of the pyrolysis of charring materials from the literature, and the discrepancies with the proposed approach and its limitations were finally discussed. The main advantage of this approach is that it provides a generalized expression, requiring minimal input of material properties, which predicts the MLR change over time for any heat flux within engineering accuracy.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.