{"title":"Face antispoofing method based on single-modal and lightweight network","authors":"Guoxiang Tong, Xinrong Yan","doi":"10.1117/1.jei.33.3.033030","DOIUrl":null,"url":null,"abstract":"In the field of face antispoofing, researchers are increasingly focusing their efforts on multimodal and feature fusion. While multimodal approaches are more effective than single-modal ones, they often come with a huge number of parameters, require significant computational resources, and pose challenges for execution on mobile devices. To address the real-time problem, we propose a fast and lightweight framework based on ShuffleNet V2. Our approach takes patch-level images as input, enhances unit performance by introducing an attention module, and addresses dataset sample imbalance issues through the focal loss function. The framework effectively tackles the real-time constraints of the model. We evaluate the performance of our model on CASIA-FASD, Replay-Attack, and MSU-MFSD datasets. The results demonstrate that our method outperforms the current state-of-the-art methods in both intratest and intertest scenarios. Furthermore, our network has only 0.84 M parameters and 0.81 GFlops, making it suitable for deployment in mobile and real-time settings. Our work can serve as a valuable reference for researchers seeking to develop single-modal face antispoofing methods suitable for mobile and real-time applications.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"230 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.3.033030","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of face antispoofing, researchers are increasingly focusing their efforts on multimodal and feature fusion. While multimodal approaches are more effective than single-modal ones, they often come with a huge number of parameters, require significant computational resources, and pose challenges for execution on mobile devices. To address the real-time problem, we propose a fast and lightweight framework based on ShuffleNet V2. Our approach takes patch-level images as input, enhances unit performance by introducing an attention module, and addresses dataset sample imbalance issues through the focal loss function. The framework effectively tackles the real-time constraints of the model. We evaluate the performance of our model on CASIA-FASD, Replay-Attack, and MSU-MFSD datasets. The results demonstrate that our method outperforms the current state-of-the-art methods in both intratest and intertest scenarios. Furthermore, our network has only 0.84 M parameters and 0.81 GFlops, making it suitable for deployment in mobile and real-time settings. Our work can serve as a valuable reference for researchers seeking to develop single-modal face antispoofing methods suitable for mobile and real-time applications.
期刊介绍:
The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.