The generation of a clotted peloidal micrite fabric by endolithic cyanobacteria in recent thrombolites from Cuatro Cienegas, northern Mexico

IF 2.6 2区 地球科学 Q1 GEOLOGY Sedimentology Pub Date : 2024-07-01 DOI:10.1111/sed.13215
Elizabeth Chacón‐Baca, Oscar Romero de la Cruz, Gabriel Chavez‐Cabello, Edith Cienfuegos Alvarado, Pedro Morales‐Puente, Leticia Alba‐Aldave, Saul Blanco Lanza
{"title":"The generation of a clotted peloidal micrite fabric by endolithic cyanobacteria in recent thrombolites from Cuatro Cienegas, northern Mexico","authors":"Elizabeth Chacón‐Baca, Oscar Romero de la Cruz, Gabriel Chavez‐Cabello, Edith Cienfuegos Alvarado, Pedro Morales‐Puente, Leticia Alba‐Aldave, Saul Blanco Lanza","doi":"10.1111/sed.13215","DOIUrl":null,"url":null,"abstract":"Cuatro Cienegas is a natural geopark that exhibits a vast reservoir of geological, geochemical and geobiological diversity, including shallow‐water microbial carbonates with clotted micrite textures known as thrombolites. Thrombolites mainly occur as domes and massive irregular carbonates along the margins of Rio Mezquites in Cuatro Cienegas, northern Mexico. Because their clotted textures result from diverse abiotic and biotic interactions at the microbial–mineral interface, the formation of clots in thrombolites continues to be a contentious issue. Through a petrographic, scanning electron microscopy and bulk biogeochemical analysis, this study investigated the role of endolithic cyanobacteria in the generation of thrombolitic clots. Their microclotted fabric is characterized by 50 to 200 μm peloidal clots, pores, fenestrae, crevices and cavities as main components. Thrombolites also contain microbial microstructures, some of them interpreted as the endolithic contribution to the genesis of clotted micrite. Thrombolites and associated fresh microbial mats are composed of cyanobacteria, green algae and diatoms. Petrography and cast‐embedded scanning electron microscopy micrographs also show the presence of filamentous endolithic cyanobacteria inside the thrombolitic framestone. The geochemical bulk characterization for carbon and oxygen isotopes shows average values of −0.7‰ Vienna PeeDee Belemnite and −8.0‰ Vienna PeeDee Belemnite, respectively. The organic matter preserved in their mineral matrix and associated microbial mats indicated the putative presence of cyanobacterial hopanoids. The high diversity of peloids and the microboring evidence, together with observed microstructures, suggest that clots may also form by the concurrent precipitation and dissolution of the thrombolites. Among the known sources of peloidal clots, microbial boring may be an additional micrite source for clot formation. Microbial carbonate dissolution may also promote heterogenous lithification by hydration and dehydration cycles. Thrombolites reflect complex systems due to concurrent interactions among producers (phototrophs), consumers (small invertebrates), mineralization (carbonate precipitation induced by phototrophs) and endolithic dissolution. The microstructures inside thrombolites, in conjunction with biogeochemical attributes of bulk thrombolites, may provide unambiguous sedimentary biosignatures.","PeriodicalId":21838,"journal":{"name":"Sedimentology","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sedimentology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/sed.13215","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cuatro Cienegas is a natural geopark that exhibits a vast reservoir of geological, geochemical and geobiological diversity, including shallow‐water microbial carbonates with clotted micrite textures known as thrombolites. Thrombolites mainly occur as domes and massive irregular carbonates along the margins of Rio Mezquites in Cuatro Cienegas, northern Mexico. Because their clotted textures result from diverse abiotic and biotic interactions at the microbial–mineral interface, the formation of clots in thrombolites continues to be a contentious issue. Through a petrographic, scanning electron microscopy and bulk biogeochemical analysis, this study investigated the role of endolithic cyanobacteria in the generation of thrombolitic clots. Their microclotted fabric is characterized by 50 to 200 μm peloidal clots, pores, fenestrae, crevices and cavities as main components. Thrombolites also contain microbial microstructures, some of them interpreted as the endolithic contribution to the genesis of clotted micrite. Thrombolites and associated fresh microbial mats are composed of cyanobacteria, green algae and diatoms. Petrography and cast‐embedded scanning electron microscopy micrographs also show the presence of filamentous endolithic cyanobacteria inside the thrombolitic framestone. The geochemical bulk characterization for carbon and oxygen isotopes shows average values of −0.7‰ Vienna PeeDee Belemnite and −8.0‰ Vienna PeeDee Belemnite, respectively. The organic matter preserved in their mineral matrix and associated microbial mats indicated the putative presence of cyanobacterial hopanoids. The high diversity of peloids and the microboring evidence, together with observed microstructures, suggest that clots may also form by the concurrent precipitation and dissolution of the thrombolites. Among the known sources of peloidal clots, microbial boring may be an additional micrite source for clot formation. Microbial carbonate dissolution may also promote heterogenous lithification by hydration and dehydration cycles. Thrombolites reflect complex systems due to concurrent interactions among producers (phototrophs), consumers (small invertebrates), mineralization (carbonate precipitation induced by phototrophs) and endolithic dissolution. The microstructures inside thrombolites, in conjunction with biogeochemical attributes of bulk thrombolites, may provide unambiguous sedimentary biosignatures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
墨西哥北部 Cuatro Cienegas 最近的血栓岩中内生蓝藻生成的凝块状球状微晶结构
Cuatro Cienegas 是一个天然地质公园,拥有丰富的地质、地球化学和地球生物多样性,其中包括具有凝块微晶质地的浅水微生物碳酸盐岩,即血栓岩。血栓岩主要以圆顶和块状不规则碳酸盐的形式出现在墨西哥北部 Cuatro Cienegas 的 Rio Mezquites 边缘。由于它们的凝块纹理是微生物-矿物界面上各种非生物和生物相互作用的结果,因此血栓岩中凝块的形成仍然是一个有争议的问题。本研究通过岩相学、扫描电子显微镜和大体积生物地球化学分析,研究了内生蓝藻在血栓质凝块生成过程中的作用。其微凝块结构的特点是以 50 至 200 μm 的球状凝块、孔隙、栅栏、裂缝和空腔为主要成分。血栓岩中还含有微生物微结构,其中一些被解释为内生岩对凝块微晶岩成因的贡献。血栓岩和相关的新鲜微生物垫由蓝藻、绿藻和硅藻组成。岩相学和铸造嵌入式扫描电子显微镜显微照片还显示,血栓框架石内部存在丝状内生蓝藻。碳同位素和氧同位素的地球化学大体特征显示,其平均值分别为-0.7‰维也纳皮迪白云石和-8.0‰维也纳皮迪白云石。其矿物基质和相关微生物垫中保存的有机物表明可能存在蓝藻类。球粒体的高度多样性和微孔证据以及观察到的微观结构表明,凝块也可能是通过同时沉淀和溶解血栓沸石而形成的。在已知的球状凝块来源中,微生物乏味可能是凝块形成的另一个微晶来源。微生物碳酸盐溶解也可能通过水化和脱水循环促进异质岩化。血栓岩反映了生产者(光养生物)、消费者(小型无脊椎动物)、矿化(光养生物诱导的碳酸盐沉淀)和内溶石之间同时发生相互作用的复杂系统。血栓岩内部的微观结构与块状血栓岩的生物地球化学属性相结合,可提供明确的沉积生物特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sedimentology
Sedimentology 地学-地质学
CiteScore
8.20
自引率
11.40%
发文量
94
审稿时长
6-12 weeks
期刊介绍: The international leader in its field, Sedimentology publishes ground-breaking research from across the spectrum of sedimentology, sedimentary geology and sedimentary geochemistry. Areas covered include: experimental and theoretical grain transport; sediment fluxes; modern and ancient sedimentary environments; sequence stratigraphy sediment-organism interaction; palaeosoils; diagenesis; stable isotope geochemistry; environmental sedimentology
期刊最新文献
Hydrothermal activity near the Permian–Triassic transition in the south‐western Ordos Basin, China: Evidence from carbonate cementation in Upper Permian sandstones Erratum: Settling velocity and drag coefficient of platy shell fragments [Sedimentology, 67(4), 2095–2110] Towards an improved understanding of Ca–Mg carbonates with nonplanar surfaces: An experimental approach Recognition of a cryptic maximum flooding surface in shallow marine carbonate sequences using geochemical (Y/Ho) proxy data Enhanced mud retention as an autogenic mechanism for sustained delta growth: Insight from records of the Lafourche subdelta of the Mississippi River
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1