Critical Phase Transition in a Large Language Model

Kai Nakaishi, Yoshihiko Nishikawa, Koji Hukushima
{"title":"Critical Phase Transition in a Large Language Model","authors":"Kai Nakaishi, Yoshihiko Nishikawa, Koji Hukushima","doi":"arxiv-2406.05335","DOIUrl":null,"url":null,"abstract":"The performance of large language models (LLMs) strongly depends on the\n\\textit{temperature} parameter. Empirically, at very low temperatures, LLMs\ngenerate sentences with clear repetitive structures, while at very high\ntemperatures, generated sentences are often incomprehensible. In this study,\nusing GPT-2, we numerically demonstrate that the difference between the two\nregimes is not just a smooth change but a phase transition with singular,\ndivergent statistical quantities. Our extensive analysis shows that critical\nbehaviors, such as a power-law decay of correlation in a text, emerge in the\nLLM at the transition temperature as well as in a natural language dataset. We\nalso discuss that several statistical quantities characterizing the criticality\nshould be useful to evaluate the performance of LLMs.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.05335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of large language models (LLMs) strongly depends on the \textit{temperature} parameter. Empirically, at very low temperatures, LLMs generate sentences with clear repetitive structures, while at very high temperatures, generated sentences are often incomprehensible. In this study, using GPT-2, we numerically demonstrate that the difference between the two regimes is not just a smooth change but a phase transition with singular, divergent statistical quantities. Our extensive analysis shows that critical behaviors, such as a power-law decay of correlation in a text, emerge in the LLM at the transition temperature as well as in a natural language dataset. We also discuss that several statistical quantities characterizing the criticality should be useful to evaluate the performance of LLMs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型语言模型中的临界相变
大型语言模型(LLMs)的性能在很大程度上取决于(textit{temperature})参数。根据经验,在极低的温度下,大语言模型生成的句子具有清晰的重复结构,而在极高的温度下,生成的句子往往难以理解。在本研究中,我们使用 GPT-2 用数值证明了这两种状态之间的差异不仅仅是平滑的变化,而是具有奇异、发散统计量的相变。我们的大量分析表明,在过渡温度下,LLM 和自然语言数据集中都出现了临界行为,如文本中相关性的幂律衰减。我们还讨论了表征临界值的几个统计量,它们应该有助于评估 LLM 的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Analysis of the OpenAI O1-Preview Model in Solving Random K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver? Trade-off relations between quantum coherence and measure of many-body localization Soft modes in vector spin glass models on sparse random graphs Boolean mean field spin glass model: rigorous results Generalized hetero-associative neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1