Loading Conditions Effects on Fatigue Life of Notched Rods Using Four-Point Bending Test

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL Experimental Techniques Pub Date : 2024-07-01 DOI:10.1007/s40799-024-00726-9
H. Chouikhi, M. Mahdi, M. Saber
{"title":"Loading Conditions Effects on Fatigue Life of Notched Rods Using Four-Point Bending Test","authors":"H. Chouikhi, M. Mahdi, M. Saber","doi":"10.1007/s40799-024-00726-9","DOIUrl":null,"url":null,"abstract":"<p>Shaft design assumes that the end supports of the shaft are simply supported that is not entirely correct. This article investigates the effects of simply supported ends and fixed-fixed supported ends on the bending moment developed in shafts. The bending moments and hence bending stress are life limiting parameters of shafts. Moreover, the effects of transverse loading inclination, loading spacing, and loading variation on the bending moment developed in shafts are studied. Analytical, numerical, and experimental approaches were adopted. Notched steel rods were used in fatigue experiments. The fatigue lives of those rods were measured and recorded. The bending moment applied to the rod specimen was calculated and compared to those obtained from the analytical and numerical approaches. The studies revealed that the simply supported end conditions will result in a shaft diameter that is 88% larger. However, the fixed-fixed end condition will result in a shaft diameter that is 67% smaller. The average bending moments of the simply supported and the fixed-fixed end conditions will result in the most accurate shaft diameter. Moreover, the maximum bending moment occurred when the load inclination angle θ = 0.0. It also increased with increasing the load ratio P<sub>1</sub>/P<sub>2</sub> and the load spacing ratio <i>l</i><sub>1</sub>/L, where P<sub>1</sub>, P<sub>2</sub>, <i>l</i><sub>1</sub>, and L are respectively the left-hand load, the right-hand load, the position of P<sub>1</sub> from the left-hand support, and the total length of the shaft.</p>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40799-024-00726-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Shaft design assumes that the end supports of the shaft are simply supported that is not entirely correct. This article investigates the effects of simply supported ends and fixed-fixed supported ends on the bending moment developed in shafts. The bending moments and hence bending stress are life limiting parameters of shafts. Moreover, the effects of transverse loading inclination, loading spacing, and loading variation on the bending moment developed in shafts are studied. Analytical, numerical, and experimental approaches were adopted. Notched steel rods were used in fatigue experiments. The fatigue lives of those rods were measured and recorded. The bending moment applied to the rod specimen was calculated and compared to those obtained from the analytical and numerical approaches. The studies revealed that the simply supported end conditions will result in a shaft diameter that is 88% larger. However, the fixed-fixed end condition will result in a shaft diameter that is 67% smaller. The average bending moments of the simply supported and the fixed-fixed end conditions will result in the most accurate shaft diameter. Moreover, the maximum bending moment occurred when the load inclination angle θ = 0.0. It also increased with increasing the load ratio P1/P2 and the load spacing ratio l1/L, where P1, P2, l1, and L are respectively the left-hand load, the right-hand load, the position of P1 from the left-hand support, and the total length of the shaft.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用四点弯曲试验的加载条件对缺口杆疲劳寿命的影响
轴的设计假定轴的端部支撑为简单支撑,这并不完全正确。本文研究了简单支撑端和固定-固定支撑端对轴中产生的弯矩的影响。弯矩和弯曲应力是限制轴寿命的参数。此外,还研究了横向加载倾斜度、加载间距和加载变化对轴弯曲力矩的影响。研究采用了分析、数值和实验方法。疲劳实验中使用了缺口钢棒。对这些钢棒的疲劳寿命进行了测量和记录。计算了施加在杆件试样上的弯矩,并与分析和数值方法得出的结果进行了比较。研究表明,简单支撑端部条件将导致轴直径增大 88%。然而,固定-固定端条件将导致轴直径减小 67%。简单支撑和固定-固定端部条件的平均弯矩将导致最精确的轴直径。此外,最大弯矩出现在荷载倾角 θ = 0.0 时。其中 P1、P2、l1 和 L 分别为左侧载荷、右侧载荷、P1 与左侧支撑的位置以及轴的总长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Techniques
Experimental Techniques 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
88
审稿时长
5.2 months
期刊介绍: Experimental Techniques is a bimonthly interdisciplinary publication of the Society for Experimental Mechanics focusing on the development, application and tutorial of experimental mechanics techniques. The purpose for Experimental Techniques is to promote pedagogical, technical and practical advancements in experimental mechanics while supporting the Society''s mission and commitment to interdisciplinary application, research and development, education, and active promotion of experimental methods to: - Increase the knowledge of physical phenomena - Further the understanding of the behavior of materials, structures, and systems - Provide the necessary physical observations necessary to improve and assess new analytical and computational approaches.
期刊最新文献
Reconstruction of Unsteady Lift Force Measurements Using Non-Dimensional Scaling Optimization Surface Microstructure Evolution and Mechanical Property Investigation of Inconel 718 Alloy Using Multiple Trimmings and WEDM Improving the Efficiency of Single Lap Riveted Joints in the Carbon Nanofiller Reinforced Laminated Polymer Composites Influence of Using SiC and Al2O3 Ceramic Front Layer on Ballistic Performance of a Bainitic Steel: A Comparative Study Designing a Flexural Fatigue Machine for Characterization of 3d Printed Materials: An Approach Using the Third Law of Newton
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1