A Descent Algorithm for the Optimal Control of ReLU Neural Network Informed PDEs Based on Approximate Directional Derivatives

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Optimization Pub Date : 2024-07-02 DOI:10.1137/22m1534420
Guozhi Dong, Michael Hintermüller, Kostas Papafitsoros
{"title":"A Descent Algorithm for the Optimal Control of ReLU Neural Network Informed PDEs Based on Approximate Directional Derivatives","authors":"Guozhi Dong, Michael Hintermüller, Kostas Papafitsoros","doi":"10.1137/22m1534420","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2314-2349, September 2024. <br/> Abstract. We propose and analyze a numerical algorithm for solving a class of optimal control problems for learning-informed semilinear partial differential equations (PDEs). Such PDEs contain constituents that are in principle unknown and are approximated by nonsmooth ReLU neural networks. We first show that direct smoothing of the ReLU network with the aim of using classical numerical solvers can have disadvantages, such as potentially introducing multiple solutions for the corresponding PDE. This motivates us to devise a numerical algorithm that treats directly the nonsmooth optimal control problem, by employing a descent algorithm inspired by a bundle-free method. Several numerical examples are provided and the efficiency of the algorithm is shown.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1534420","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 3, Page 2314-2349, September 2024.
Abstract. We propose and analyze a numerical algorithm for solving a class of optimal control problems for learning-informed semilinear partial differential equations (PDEs). Such PDEs contain constituents that are in principle unknown and are approximated by nonsmooth ReLU neural networks. We first show that direct smoothing of the ReLU network with the aim of using classical numerical solvers can have disadvantages, such as potentially introducing multiple solutions for the corresponding PDE. This motivates us to devise a numerical algorithm that treats directly the nonsmooth optimal control problem, by employing a descent algorithm inspired by a bundle-free method. Several numerical examples are provided and the efficiency of the algorithm is shown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于近似方向衍生物的 ReLU 神经网络 PDE 最佳控制后裔算法
SIAM 优化期刊》,第 34 卷第 3 期,第 2314-2349 页,2024 年 9 月。 摘要我们提出并分析了一种数值算法,用于求解一类学习信息半线性偏微分方程(PDE)的最优控制问题。这类偏微分方程包含原则上未知的成分,由非光滑 ReLU 神经网络近似。我们首先表明,以使用经典数值求解器为目的直接平滑 ReLU 网络会有一些缺点,例如可能会为相应的 PDE 引入多个解。这促使我们设计出一种数值算法,通过采用受无束法启发的下降算法,直接处理非平滑最优控制问题。我们提供了几个数值示例,并展示了该算法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
期刊最新文献
Corrigendum and Addendum: Newton Differentiability of Convex Functions in Normed Spaces and of a Class of Operators Newton-Based Alternating Methods for the Ground State of a Class of Multicomponent Bose–Einstein Condensates Minimum Spanning Trees in Infinite Graphs: Theory and Algorithms On Minimal Extended Representations of Generalized Power Cones A Functional Model Method for Nonconvex Nonsmooth Conditional Stochastic Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1