Time Consistency for Multistage Stochastic Optimization Problems under Constraints in Expectation

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Optimization Pub Date : 2024-06-04 DOI:10.1137/22m151830x
Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara
{"title":"Time Consistency for Multistage Stochastic Optimization Problems under Constraints in Expectation","authors":"Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara","doi":"10.1137/22m151830x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 2, Page 1909-1936, June 2024. <br/> Abstract. We consider sequences—indexed by time (discrete stages)—of parametric families of multistage stochastic optimization problems; thus, at each time, the optimization problems in a family are parameterized by some quantities (initial states, constraint levels, and so on). In this framework, we introduce an adapted notion of parametric time-consistent optimal solutions: They are solutions that remain optimal after truncation of the past and that are optimal for any values of the parameters. We link this time consistency notion with the concept of state variable in Markov decision processes for a class of multistage stochastic optimization problems incorporating state constraints at the final time, formulated in expectation. For such problems, when the primitive noise random process is stagewise independent and takes a finite number of values, we show that time-consistent solutions can be obtained by considering a finite-dimensional state variable. We illustrate our results on a simple dam management problem.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m151830x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 2, Page 1909-1936, June 2024.
Abstract. We consider sequences—indexed by time (discrete stages)—of parametric families of multistage stochastic optimization problems; thus, at each time, the optimization problems in a family are parameterized by some quantities (initial states, constraint levels, and so on). In this framework, we introduce an adapted notion of parametric time-consistent optimal solutions: They are solutions that remain optimal after truncation of the past and that are optimal for any values of the parameters. We link this time consistency notion with the concept of state variable in Markov decision processes for a class of multistage stochastic optimization problems incorporating state constraints at the final time, formulated in expectation. For such problems, when the primitive noise random process is stagewise independent and takes a finite number of values, we show that time-consistent solutions can be obtained by considering a finite-dimensional state variable. We illustrate our results on a simple dam management problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
期望约束下多级随机优化问题的时间一致性
SIAM 优化期刊》,第 34 卷第 2 期,第 1909-1936 页,2024 年 6 月。 摘要。我们考虑以时间(离散阶段)为索引的多阶段随机优化问题的参数族序列;因此,在每个时间,族中的优化问题都由一些量(初始状态、约束水平等)参数化。在这一框架下,我们引入了参数时间一致性最优解的调整概念:它们是在截断过去后仍保持最优的解,而且对于任何参数值都是最优的。我们将这一时间一致性概念与马尔可夫决策过程中的状态变量概念联系起来,用于一类包含最终时间状态约束条件的多阶段随机优化问题,并以期望值表示。对于这类问题,当原始噪声随机过程是阶段性独立的,并且取值数量有限时,我们证明了通过考虑有限维的状态变量可以得到时间一致的解。我们用一个简单的水坝管理问题来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
期刊最新文献
Corrigendum and Addendum: Newton Differentiability of Convex Functions in Normed Spaces and of a Class of Operators Newton-Based Alternating Methods for the Ground State of a Class of Multicomponent Bose–Einstein Condensates Minimum Spanning Trees in Infinite Graphs: Theory and Algorithms On Minimal Extended Representations of Generalized Power Cones A Functional Model Method for Nonconvex Nonsmooth Conditional Stochastic Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1