Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara
{"title":"Time Consistency for Multistage Stochastic Optimization Problems under Constraints in Expectation","authors":"Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara","doi":"10.1137/22m151830x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 2, Page 1909-1936, June 2024. <br/> Abstract. We consider sequences—indexed by time (discrete stages)—of parametric families of multistage stochastic optimization problems; thus, at each time, the optimization problems in a family are parameterized by some quantities (initial states, constraint levels, and so on). In this framework, we introduce an adapted notion of parametric time-consistent optimal solutions: They are solutions that remain optimal after truncation of the past and that are optimal for any values of the parameters. We link this time consistency notion with the concept of state variable in Markov decision processes for a class of multistage stochastic optimization problems incorporating state constraints at the final time, formulated in expectation. For such problems, when the primitive noise random process is stagewise independent and takes a finite number of values, we show that time-consistent solutions can be obtained by considering a finite-dimensional state variable. We illustrate our results on a simple dam management problem.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m151830x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Optimization, Volume 34, Issue 2, Page 1909-1936, June 2024. Abstract. We consider sequences—indexed by time (discrete stages)—of parametric families of multistage stochastic optimization problems; thus, at each time, the optimization problems in a family are parameterized by some quantities (initial states, constraint levels, and so on). In this framework, we introduce an adapted notion of parametric time-consistent optimal solutions: They are solutions that remain optimal after truncation of the past and that are optimal for any values of the parameters. We link this time consistency notion with the concept of state variable in Markov decision processes for a class of multistage stochastic optimization problems incorporating state constraints at the final time, formulated in expectation. For such problems, when the primitive noise random process is stagewise independent and takes a finite number of values, we show that time-consistent solutions can be obtained by considering a finite-dimensional state variable. We illustrate our results on a simple dam management problem.
期刊介绍:
The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.