Prospects of Application of Volume-Surface Quenching for Vehicle Parts Made of Steels with Reduced Hardenability

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING Metal Science and Heat Treatment Pub Date : 2024-07-03 DOI:10.1007/s11041-024-01025-1
A. E. Unitsky, M. I. Tsyrlin
{"title":"Prospects of Application of Volume-Surface Quenching for Vehicle Parts Made of Steels with Reduced Hardenability","authors":"A. E. Unitsky,&nbsp;M. I. Tsyrlin","doi":"10.1007/s11041-024-01025-1","DOIUrl":null,"url":null,"abstract":"<p>Various methods of hardening of machine parts and mechanisms are considered. Volume-surface quenching of steels with reduced hardenability is analyzed. The structure, hardness and toughness of steels subjected to different types of quenching are investigated. It is shown that volume-surface quenching ensures a uniform distribution of hardness from the surface to the base metal of the steels, and their toughness is higher than that of steels subjected to volume or surface quenching. The method of volume-surface quenching is recommended for wide use in the production of vehicle parts.</p>","PeriodicalId":701,"journal":{"name":"Metal Science and Heat Treatment","volume":"66 1-2","pages":"107 - 110"},"PeriodicalIF":0.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Science and Heat Treatment","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11041-024-01025-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Various methods of hardening of machine parts and mechanisms are considered. Volume-surface quenching of steels with reduced hardenability is analyzed. The structure, hardness and toughness of steels subjected to different types of quenching are investigated. It is shown that volume-surface quenching ensures a uniform distribution of hardness from the surface to the base metal of the steels, and their toughness is higher than that of steels subjected to volume or surface quenching. The method of volume-surface quenching is recommended for wide use in the production of vehicle parts.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
降低淬透性钢制汽车零件的表面淬火应用前景
考虑了机械零件和机构的各种淬火方法。分析了淬透性降低的钢的体积-表面淬火。研究了不同类型淬火钢的结构、硬度和韧性。结果表明,体积-表面淬火可确保钢材从表面到基体金属的硬度分布均匀,而且其韧性高于采用体积或表面淬火的钢材。建议在汽车零件生产中广泛使用表面-体积淬火法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metal Science and Heat Treatment
Metal Science and Heat Treatment 工程技术-冶金工程
CiteScore
1.20
自引率
16.70%
发文量
102
审稿时长
4-8 weeks
期刊介绍: Metal Science and Heat Treatment presents new fundamental and practical research in physical metallurgy, heat treatment equipment, and surface engineering. Topics covered include: New structural, high temperature, tool and precision steels; Cold-resistant, corrosion-resistant and radiation-resistant steels; Steels with rapid decline of induced properties; Alloys with shape memory effect; Bulk-amorphyzable metal alloys; Microcrystalline alloys; Nano materials and foam materials for medical use.
期刊最新文献
Crystallographic Features of Phase Transformations in High-Strength Low-Carbon Pipe Steel Variations in the Structure and Magnetic Parameters of Martensitic Steel Induced by Plastic Deformation Microstructure and Mechanical Properties of Layered Billets from Various Grades of Austenitic Steels Grown by Additive Electric Arc Welding Kinetics of Aging and Changes in the Mechanical Properties of Mg – Y – Nd – Gd – Zn – Zr Cast Magnesium Alloy During Overburning Operational Properties of Metal–Metal Friction Members with Surface Layers Modified by Copper-Based Alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1