Engineering Bifunctional Galactokinase/Uridyltransferase Chimera for Enhanced UDP-d-Xylose Production

JACS Au Pub Date : 2024-06-20 DOI:10.1021/jacsau.4c00288
Jin-Da Zhuang, Jin-Min Shi, Chen-Cheng Hong, Ting-Ting Wu, Li Liu, Josef Voglmeir
{"title":"Engineering Bifunctional Galactokinase/Uridyltransferase Chimera for Enhanced UDP-d-Xylose Production","authors":"Jin-Da Zhuang, Jin-Min Shi, Chen-Cheng Hong, Ting-Ting Wu, Li Liu, Josef Voglmeir","doi":"10.1021/jacsau.4c00288","DOIUrl":null,"url":null,"abstract":"The biotechnological production of uridine diphosphate-<span>d</span>-xylose (UDP-<span>d</span>-xylose), the glycosyl donor in enzymatic for <span>d</span>-xylose, is an important precursor for advancing glycoengineering research on biopharmaceuticals such as heparin and glycosaminoglycans. Leveraging a recently discovered UDP-xylose salvage pathway, we have engineered a series of bifunctional chimeric biocatalysts derived from <i>Solitalea canadensis</i> galactokinase/uridyltransferase, facilitating the conversion of <span>d</span>-xylose to UDP-<span>d</span>-xylose. This study elucidates the novel assembly of eight fusion protein constructs, differing in domain orientations and linker peptide lengths, to investigate their functional expression in <i>Escherichia coli</i>, resulting in the synthesis of the first bifunctional enzyme that orchestrates a direct transformation from <span>d</span>-xylose to UDP-<span>d</span>-xylose. Fusion constructs with a NH<sub>2</sub>-GSGGGSGHM-COOH peptide linker demonstrated the highest expression and catalytic tenacity. For the highest catalytic conversion from <span>d</span>-xylose to UDP-<span>d</span>-xylose, we established an optimum pH of 7.0 and a temperature optimum of 30 °C, with an optimal fusion enzyme concentration of 3.3 mg/mL for large-scale UDP-<span>d</span>-xylose production. Insights into ATP and ADP inhibition further helped to optimize the reaction conditions. Testing various ratios of unfused galactokinase and uridyltransferase biocatalysts for UDP-xylose synthesis from <span>d</span>-xylose revealed that a 1:1 ratio was optimal. The <i>K</i><sub>cat</sub>/<i>K</i><sub>m</sub> value for the NH<sub>2</sub>-GSGGGSGHM-COOH peptide linker showed a 10% improvement compared with the unfused counterparts. The strategic design of these fusion enzymes efficiently routes for the convenient and efficient biocatalytic synthesis of xylosides in biotechnological and pharmaceutical applications.","PeriodicalId":14799,"journal":{"name":"JACS Au","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The biotechnological production of uridine diphosphate-d-xylose (UDP-d-xylose), the glycosyl donor in enzymatic for d-xylose, is an important precursor for advancing glycoengineering research on biopharmaceuticals such as heparin and glycosaminoglycans. Leveraging a recently discovered UDP-xylose salvage pathway, we have engineered a series of bifunctional chimeric biocatalysts derived from Solitalea canadensis galactokinase/uridyltransferase, facilitating the conversion of d-xylose to UDP-d-xylose. This study elucidates the novel assembly of eight fusion protein constructs, differing in domain orientations and linker peptide lengths, to investigate their functional expression in Escherichia coli, resulting in the synthesis of the first bifunctional enzyme that orchestrates a direct transformation from d-xylose to UDP-d-xylose. Fusion constructs with a NH2-GSGGGSGHM-COOH peptide linker demonstrated the highest expression and catalytic tenacity. For the highest catalytic conversion from d-xylose to UDP-d-xylose, we established an optimum pH of 7.0 and a temperature optimum of 30 °C, with an optimal fusion enzyme concentration of 3.3 mg/mL for large-scale UDP-d-xylose production. Insights into ATP and ADP inhibition further helped to optimize the reaction conditions. Testing various ratios of unfused galactokinase and uridyltransferase biocatalysts for UDP-xylose synthesis from d-xylose revealed that a 1:1 ratio was optimal. The Kcat/Km value for the NH2-GSGGGSGHM-COOH peptide linker showed a 10% improvement compared with the unfused counterparts. The strategic design of these fusion enzymes efficiently routes for the convenient and efficient biocatalytic synthesis of xylosides in biotechnological and pharmaceutical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计双功能半乳糖激酶/胞苷酸转移酶嵌合体,提高 UDP-d-木糖产量
二磷酸尿苷-二木糖(UDP-d-xylose)是酶解二木糖时的糖基供体,利用生物技术生产二磷酸尿苷-二木糖是推进肝素和糖胺聚糖等生物制药的糖工程研究的重要前体。利用最近发现的 UDP-木糖挽救途径,我们从 Solitalea canadensis 半乳糖激酶/尿苷转移酶中设计了一系列双功能嵌合生物催化剂,促进了 d-木糖向 UDP-d- 木糖的转化。本研究阐明了八种融合蛋白构建体的新组装方法,这些构建体在结构域方向和连接肽长度上各不相同,研究了它们在大肠杆菌中的功能表达,从而合成了首个能协调从二木糖直接转化为 UDP-二木糖的双功能酶。带有 NH2-GSGGGSGHM-COOH 肽连接体的融合构建物表现出了最高的表达能力和催化韧性。为了实现从 d-木糖到 UDP-d-木糖的最高催化转化率,我们确定了最佳 pH 值为 7.0,最佳温度为 30 °C,大规模生产 UDP-d-xylose 的最佳融合酶浓度为 3.3 mg/mL。对 ATP 和 ADP 抑制作用的深入了解进一步帮助优化了反应条件。对未融合的半乳激酶和尿基转移酶生物催化剂从二木糖合成 UDP-xylose 的各种比例进行测试后发现,1:1 的比例是最佳的。NH2-GSGGSGHM-COOH 肽连接体的 Kcat/Km 值与未融合的对应物相比提高了 10%。这些融合酶的策略性设计为木糖苷在生物技术和制药应用中方便高效的生物催化合成提供了有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Signaling Mechanism of Cuproptosis Activating cGAS-STING Immune Pathway Decoupling Electrolytic Water Splitting by an Oxygen-Mediating Process N2 Dissociation vs Reversible 1,2-Methyl Migration in PCNHCP Cobalt(I) Complexes in the Stereoselective Isomerization (E/Z) of Allyl Ethers Selectivity of Complex Coacervation in Multiprotein Mixtures Unleashing the Potential: High Responsivity at Room Temperature of Halide Perovskite-Based Short-Wave Infrared Detectors with Ultrabroad Bandwidth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1