Comparative responses of two maize genotypes with contrasting drought tolerance to biochar application

IF 13.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Biochar Pub Date : 2024-07-03 DOI:10.1007/s42773-024-00359-6
Renjie Ruan, Hans Lambers, Yaosheng Wang
{"title":"Comparative responses of two maize genotypes with contrasting drought tolerance to biochar application","authors":"Renjie Ruan, Hans Lambers, Yaosheng Wang","doi":"10.1007/s42773-024-00359-6","DOIUrl":null,"url":null,"abstract":"<p>The impact of biochar application on plant performance under drought stress necessitates a comprehensive understanding of biochar–soil interaction, root growth, and plant physiological processes. Therefore, pot experiments were conducted to assess the effects of biochar on plant responses to drought stress at the seedling stage. Two contrasting maize genotypes (drought-sensitive KN5585 vs. -tolerant Mo17) were subjected to biochar application under drought stress conditions. The results indicated that biochar application decreased soil exchangeable Na<sup>+</sup> and Ca<sup>2+</sup> contents while increased soil exchangeable K<sup>+</sup> content (2.7-fold) and electrical conductivity (4.0-fold), resulting in an elevated leaf sap K<sup>+</sup> concentration in both maize genotypes. The elevated K<sup>+</sup> concentration with biochar application increased root apoplastic pH in the drought-sensitive KN5585, but not in the drought-tolerant Mo17, which stimulated the activation of H<sup>+</sup>-ATPase and H<sup>+</sup> efflux in KN5585 roots. Apoplast alkalinization of the drought-sensitive KN5585 resulting from biochar application further inhibited root growth by 30.7%, contributing to an improvement in water potential, a reduction in levels of O<sub>2</sub><sup>–</sup>, H<sub>2</sub>O<sub>2</sub>, T-AOC, SOD, and POD, as well as the down-regulation of genes associated with drought resistance in KN5585 roots. In contrast, biochar application increased leaf sap osmolality and provided osmotic protection for the drought-tolerant Mo17, which was associated with trehalose accumulation in Mo17 roots. Biochar application improved sucrose utilization and circadian rhythm of Mo17 roots, and increased fresh weight under drought stress. This study suggests that biochar application has the potential to enhance plant drought tolerance, which is achieved through the inhibition of root growth in sensitive plants and the enhancement of osmotic protection in tolerant plants, respectively.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"14 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-024-00359-6","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of biochar application on plant performance under drought stress necessitates a comprehensive understanding of biochar–soil interaction, root growth, and plant physiological processes. Therefore, pot experiments were conducted to assess the effects of biochar on plant responses to drought stress at the seedling stage. Two contrasting maize genotypes (drought-sensitive KN5585 vs. -tolerant Mo17) were subjected to biochar application under drought stress conditions. The results indicated that biochar application decreased soil exchangeable Na+ and Ca2+ contents while increased soil exchangeable K+ content (2.7-fold) and electrical conductivity (4.0-fold), resulting in an elevated leaf sap K+ concentration in both maize genotypes. The elevated K+ concentration with biochar application increased root apoplastic pH in the drought-sensitive KN5585, but not in the drought-tolerant Mo17, which stimulated the activation of H+-ATPase and H+ efflux in KN5585 roots. Apoplast alkalinization of the drought-sensitive KN5585 resulting from biochar application further inhibited root growth by 30.7%, contributing to an improvement in water potential, a reduction in levels of O2, H2O2, T-AOC, SOD, and POD, as well as the down-regulation of genes associated with drought resistance in KN5585 roots. In contrast, biochar application increased leaf sap osmolality and provided osmotic protection for the drought-tolerant Mo17, which was associated with trehalose accumulation in Mo17 roots. Biochar application improved sucrose utilization and circadian rhythm of Mo17 roots, and increased fresh weight under drought stress. This study suggests that biochar application has the potential to enhance plant drought tolerance, which is achieved through the inhibition of root growth in sensitive plants and the enhancement of osmotic protection in tolerant plants, respectively.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
耐旱性截然不同的两种玉米基因型对施用生物炭的反应比较
施用生物炭对干旱胁迫下植物表现的影响需要全面了解生物炭与土壤的相互作用、根系生长和植物生理过程。因此,我们进行了盆栽实验,以评估生物炭对植物幼苗期干旱胁迫反应的影响。在干旱胁迫条件下,对两种不同的玉米基因型(对干旱敏感的 KN5585 和耐旱的 Mo17)施用生物炭。结果表明,施用生物炭降低了土壤中可交换的 Na+ 和 Ca2+ 含量,同时提高了土壤中可交换的 K+ 含量(2.7 倍)和电导率(4.0 倍),导致两种玉米基因型的叶片汁液 K+ 浓度升高。施用生物炭导致的 K+ 浓度升高增加了对干旱敏感的 KN5585 的根系凋亡体 pH 值,但对干旱耐受的 Mo17 却没有增加,这刺激了 KN5585 根系中 H+-ATP 酶的活化和 H+ 的外流。施用生物炭导致对干旱敏感的 KN5585 的细胞质碱化,进一步抑制了 30.7% 的根系生长,从而改善了水势,降低了 O2-、H2O2、T-AOC、SOD 和 POD 的水平,并下调了与 KN5585 根系抗旱性相关的基因。相反,施用生物炭提高了叶液渗透压,为耐旱的 Mo17 提供了渗透保护,这与 Mo17 根部的三卤糖积累有关。施用生物炭改善了 Mo17 根系的蔗糖利用率和昼夜节律,并增加了干旱胁迫下的鲜重。这项研究表明,施用生物炭有可能提高植物的耐旱性,这分别是通过抑制敏感植物的根系生长和增强耐旱植物的渗透保护来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochar
Biochar Multiple-
CiteScore
18.60
自引率
10.20%
发文量
61
期刊介绍: Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.
期刊最新文献
Analyzing the trends and hotspots of biochar’s applications in agriculture, environment, and energy: a bibliometrics study for 2022 and 2023 Oyster shell facilitates the green production of nitrogen-doped porous biochar from macroalgae: a case study for removing atrazine from water Novel utilization exploration for the dephosphorization waste of Ca–modified biochar: enhanced removal of heavy metal ions from water Plant performance and soil–plant carbon relationship response to different biochar types A critical review of hydrochar based photocatalysts by hydrothermal carbonization: synthesis, mechanisms, and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1