Ultra-small Pt3Co intermetallic compounds: for efficient electrocatalytic methanol oxidation

IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Reaction Kinetics, Mechanisms and Catalysis Pub Date : 2024-06-27 DOI:10.1007/s11144-024-02640-y
Yanru Li, Hongwei Li, Yan Zhao, Dong Ji, Guixian Li, Xinhong Zhao
{"title":"Ultra-small Pt3Co intermetallic compounds: for efficient electrocatalytic methanol oxidation","authors":"Yanru Li, Hongwei Li, Yan Zhao, Dong Ji, Guixian Li, Xinhong Zhao","doi":"10.1007/s11144-024-02640-y","DOIUrl":null,"url":null,"abstract":"<p>To alleviate the sluggish kinetics exhibited by anodic Pt-based catalysts in the methanol oxidation reaction (MOR), N-doped carbon nanotube (N-CNTs) supports with uniform anchoring sites were synthesized by calcination pyrolysis, which provided abundant anchoring sites for the subsequent deposition of Pt<sub>3</sub>Co. For the first time, small-sized and highly dispersed ordered Pt<sub>3</sub>Co intermetallic compounds with different sizes were synthesized by adjusting the hydrothermal reaction temperature employed in the low-temperature N-anchoring strategy. The microstructure and physicochemical properties of Pt<sub>3</sub>Co/N-CNTs with different Pt<sub>3</sub>Co sizes were analyzed by XRD, STEM, and AC-STEM, and their electrochemical performances were evaluated by a three-electrode system. The results demonstrated that the Pt<sub>3</sub>Co synthesized at 140 °C exhibited the superior MOR activity and stability. Specifically, its mass and area specific activities were 4905.3 mA mg<sup>−1</sup><sub>Pt</sub> and 74.2 mA cm<sup>−1</sup> surpassing those of commercial Pt/C (1089.5 mA mg<sup>−1</sup><sub>Pt</sub> and 16.5 mA cm<sup>−1</sup>). Moreover, after 800 CV cycles, the current density still retained 78.9% of its initial MOR activity, thus demonstrating superior stability compared to commercial Pt/C (52.5%). The enhanced electrochemical performance of Pt<sub>3</sub>Co/N-CNTs-140 can be attributed to the smaller particles size (2.15 ± 0.03 nm) of Pt<sub>3</sub>Co, which maximizes the exposure of active site, resulting in a larger electrochemically active area and reduced activation energy for MOR. This effect not only enhances the noble metal utilization but also boosts electrocatalytic activity, thereby providing a new idea for designing robust MOR electrocatalysts with exceptional MOR activity and durability.</p>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11144-024-02640-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To alleviate the sluggish kinetics exhibited by anodic Pt-based catalysts in the methanol oxidation reaction (MOR), N-doped carbon nanotube (N-CNTs) supports with uniform anchoring sites were synthesized by calcination pyrolysis, which provided abundant anchoring sites for the subsequent deposition of Pt3Co. For the first time, small-sized and highly dispersed ordered Pt3Co intermetallic compounds with different sizes were synthesized by adjusting the hydrothermal reaction temperature employed in the low-temperature N-anchoring strategy. The microstructure and physicochemical properties of Pt3Co/N-CNTs with different Pt3Co sizes were analyzed by XRD, STEM, and AC-STEM, and their electrochemical performances were evaluated by a three-electrode system. The results demonstrated that the Pt3Co synthesized at 140 °C exhibited the superior MOR activity and stability. Specifically, its mass and area specific activities were 4905.3 mA mg−1Pt and 74.2 mA cm−1 surpassing those of commercial Pt/C (1089.5 mA mg−1Pt and 16.5 mA cm−1). Moreover, after 800 CV cycles, the current density still retained 78.9% of its initial MOR activity, thus demonstrating superior stability compared to commercial Pt/C (52.5%). The enhanced electrochemical performance of Pt3Co/N-CNTs-140 can be attributed to the smaller particles size (2.15 ± 0.03 nm) of Pt3Co, which maximizes the exposure of active site, resulting in a larger electrochemically active area and reduced activation energy for MOR. This effect not only enhances the noble metal utilization but also boosts electrocatalytic activity, thereby providing a new idea for designing robust MOR electrocatalysts with exceptional MOR activity and durability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超小型 Pt3Co 金属间化合物:用于高效电催化甲醇氧化
为了缓解阳极铂基催化剂在甲醇氧化反应(MOR)中表现出的迟缓动力学,研究人员通过煅烧热解合成了具有均匀锚定位点的掺N碳纳米管(N-CNTs)载体,为随后的Pt3Co沉积提供了丰富的锚定位点。通过调整低温 N-锚定策略中采用的水热反应温度,首次合成了不同尺寸、高度分散的有序 Pt3Co 金属间化合物。通过 XRD、STEM 和 AC-STEM 分析了不同尺寸 Pt3Co/N-CNT 的微观结构和理化性质,并通过三电极系统评估了它们的电化学性能。结果表明,在 140 °C 下合成的 Pt3Co 具有更高的摩尔活性和稳定性。具体而言,其质量比活性和面积比活性分别为 4905.3 mA mg-1Pt 和 74.2 mA cm-1,超过了商用 Pt/C(1089.5 mA mg-1Pt 和 16.5 mA cm-1)。此外,在 800 次 CV 循环后,其电流密度仍保持了初始 MOR 活性的 78.9%,因此与商用铂/铂(52.5%)相比,其稳定性更胜一筹。Pt3Co/N-CNTs-140 的电化学性能之所以得到增强,是因为 Pt3Co 的颗粒尺寸较小(2.15 ± 0.03 nm),从而最大限度地暴露了活性位点,扩大了电化学活性面积,降低了 MOR 的活化能。这种效应不仅提高了贵金属的利用率,还增强了电催化活性,从而为设计具有优异 MOR 活性和耐久性的坚固 MOR 电催化剂提供了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
201
审稿时长
2.8 months
期刊介绍: Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields: -kinetics of homogeneous reactions in gas, liquid and solid phase; -Homogeneous catalysis; -Heterogeneous catalysis; -Adsorption in heterogeneous catalysis; -Transport processes related to reaction kinetics and catalysis; -Preparation and study of catalysts; -Reactors and apparatus. Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.
期刊最新文献
A sustainable production of lignin-based activated carbon from sawdust for efficient removal of Basic Blue 9 dye from water systems Julian Hirniak, an early proponent of periodic chemical reactions Photo-catalytıc degradatıon of paracetamol using a novel photocatalyst Zr–WO3 doped charcoal Hydrophilic treatment of carbon paper for anodic porous transport layer in proton exchange membrane water electrolyzer Solid-state synthesis of La0.75Gd0.25FeO3 nanoparticles for the enhanced photodegradation of methylene blue under sunlight irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1