Finding a second Hamiltonian decomposition of a 4-regular multigraph by integer linear programming

IF 0.9 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Combinatorial Optimization Pub Date : 2024-07-03 DOI:10.1007/s10878-024-01184-0
Andrei V. Nikolaev, Egor V. Klimov
{"title":"Finding a second Hamiltonian decomposition of a 4-regular multigraph by integer linear programming","authors":"Andrei V. Nikolaev, Egor V. Klimov","doi":"10.1007/s10878-024-01184-0","DOIUrl":null,"url":null,"abstract":"<p>A Hamiltonian decomposition of a regular graph is a partition of its edge set into Hamiltonian cycles. We consider the second Hamiltonian decomposition problem: for a 4-regular multigraph, find 2 edge-disjoint Hamiltonian cycles different from the given ones. This problem arises in polyhedral combinatorics as a sufficient condition for non-adjacency in the 1-skeleton of the traveling salesperson polytope. We introduce two integer linear programming models for the problem based on the classical Dantzig-Fulkerson-Johnson and Miller-Tucker-Zemlin formulations for the traveling salesperson problem. To enhance the performance on feasible problems, we supplement the algorithm with a variable neighborhood descent heuristic w.r.t. two neighborhood structures and a chain edge fixing procedure. Based on the computational experiments, the Dantzig-Fulkerson-Johnson formulation showed the best results on directed multigraphs, while on undirected multigraphs, the variable neighborhood descent heuristic was especially effective.\n</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"22 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01184-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A Hamiltonian decomposition of a regular graph is a partition of its edge set into Hamiltonian cycles. We consider the second Hamiltonian decomposition problem: for a 4-regular multigraph, find 2 edge-disjoint Hamiltonian cycles different from the given ones. This problem arises in polyhedral combinatorics as a sufficient condition for non-adjacency in the 1-skeleton of the traveling salesperson polytope. We introduce two integer linear programming models for the problem based on the classical Dantzig-Fulkerson-Johnson and Miller-Tucker-Zemlin formulations for the traveling salesperson problem. To enhance the performance on feasible problems, we supplement the algorithm with a variable neighborhood descent heuristic w.r.t. two neighborhood structures and a chain edge fixing procedure. Based on the computational experiments, the Dantzig-Fulkerson-Johnson formulation showed the best results on directed multigraphs, while on undirected multigraphs, the variable neighborhood descent heuristic was especially effective.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过整数线性规划寻找 4 规则多图的第二哈密顿分解
正则图的哈密顿分解是将其边集分割成哈密顿循环。我们考虑的是第二个哈密顿分解问题:对于一个 4 不规则的多图,找出 2 个与给定哈密顿循环不同的边相交的哈密顿循环。这个问题出现在多面体组合学中,是旅行推销员多面体 1 骨架中不相接的充分条件。我们根据旅行推销员问题的经典 Dantzig-Fulkerson-Johnson 公式和 Miller-Tucker-Zemlin 公式,为该问题引入了两个整数线性规划模型。为了提高在可行问题上的性能,我们在算法中增加了一个可变邻域下降启发式,其中包含两个邻域结构和一个链边固定程序。根据计算实验,Dantzig-Fulkerson-Johnson 公式在有向多图上显示出最佳结果,而在无向多图上,可变邻域下降启发式特别有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
期刊最新文献
Enhanced deterministic approximation algorithm for non-monotone submodular maximization under knapsack constraint with linear query complexity A novel arctic fox survival strategy inspired optimization algorithm Dynamic time window based full-view coverage maximization in CSNs Different due-window assignment scheduling with deterioration effects An upper bound for neighbor-connectivity of graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1