{"title":"A Multi-solution Study on GDPR AI-enabled Completeness Checking of DPAs","authors":"Muhammad Ilyas Azeem, Sallam Abualhaija","doi":"10.1007/s10664-024-10491-3","DOIUrl":null,"url":null,"abstract":"<p>Specifying legal requirements for software systems to ensure their compliance with the applicable regulations is a major concern of requirements engineering. Personal data which is collected by an organization is often shared with other organizations to perform certain processing activities. In such cases, the General Data Protection Regulation (GDPR) requires issuing a data processing agreement (DPA) which regulates the processing and further ensures that personal data remains protected. Violating GDPR can lead to huge fines reaching to billions of Euros. Software systems involving personal data processing must adhere to the legal obligations stipulated both at a general level in GDPR as well as the obligations outlined in DPAs highlighting specific business. In other words, a DPA is yet another source from which requirements engineers can elicit legal requirements. However, the DPA must be complete according to GDPR to ensure that the elicited requirements cover the complete set of obligations. Therefore, checking the completeness of DPAs is a prerequisite step towards developing a compliant system. Analyzing DPAs with respect to GDPR entirely manually is time consuming and requires adequate legal expertise. In this paper, we propose an automation strategy that addresses the completeness checking of DPAs against GDPR provisions as a text classification problem. Specifically, we pursue ten alternative solutions which are enabled by different technologies, namely traditional machine learning, deep learning, language modeling, and few-shot learning. The goal of our work is to empirically examine how these different technologies fare in the legal domain. We computed F<span>\\(_2\\)</span> score on a set of 30 real DPAs. Our evaluation shows that best-performing solutions yield F<span>\\(_2\\)</span> score of 86.7% and 89.7% are based on pre-trained BERT and RoBERTa language models. Our analysis further shows that other alternative solutions based on deep learning (e.g., BiLSTM) and few-shot learning (e.g., SetFit) can achieve comparable accuracy, yet are more efficient to develop.</p>","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":"1 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Empirical Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10664-024-10491-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Specifying legal requirements for software systems to ensure their compliance with the applicable regulations is a major concern of requirements engineering. Personal data which is collected by an organization is often shared with other organizations to perform certain processing activities. In such cases, the General Data Protection Regulation (GDPR) requires issuing a data processing agreement (DPA) which regulates the processing and further ensures that personal data remains protected. Violating GDPR can lead to huge fines reaching to billions of Euros. Software systems involving personal data processing must adhere to the legal obligations stipulated both at a general level in GDPR as well as the obligations outlined in DPAs highlighting specific business. In other words, a DPA is yet another source from which requirements engineers can elicit legal requirements. However, the DPA must be complete according to GDPR to ensure that the elicited requirements cover the complete set of obligations. Therefore, checking the completeness of DPAs is a prerequisite step towards developing a compliant system. Analyzing DPAs with respect to GDPR entirely manually is time consuming and requires adequate legal expertise. In this paper, we propose an automation strategy that addresses the completeness checking of DPAs against GDPR provisions as a text classification problem. Specifically, we pursue ten alternative solutions which are enabled by different technologies, namely traditional machine learning, deep learning, language modeling, and few-shot learning. The goal of our work is to empirically examine how these different technologies fare in the legal domain. We computed F\(_2\) score on a set of 30 real DPAs. Our evaluation shows that best-performing solutions yield F\(_2\) score of 86.7% and 89.7% are based on pre-trained BERT and RoBERTa language models. Our analysis further shows that other alternative solutions based on deep learning (e.g., BiLSTM) and few-shot learning (e.g., SetFit) can achieve comparable accuracy, yet are more efficient to develop.
期刊介绍:
Empirical Software Engineering provides a forum for applied software engineering research with a strong empirical component, and a venue for publishing empirical results relevant to both researchers and practitioners. Empirical studies presented here usually involve the collection and analysis of data and experience that can be used to characterize, evaluate and reveal relationships between software development deliverables, practices, and technologies. Over time, it is expected that such empirical results will form a body of knowledge leading to widely accepted and well-formed theories.
The journal also offers industrial experience reports detailing the application of software technologies - processes, methods, or tools - and their effectiveness in industrial settings.
Empirical Software Engineering promotes the publication of industry-relevant research, to address the significant gap between research and practice.