Visible Light-Driven Synthesis of PtCu Alloy Nanodendrites for Electrocatalytic Nitrogen-Conversion Reactions

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Advanced Sustainable Systems Pub Date : 2024-06-21 DOI:10.1002/adsu.202400272
Guoqiang Wang, Chuanjun Wang, Xin Zhao, Shenjie Liu, Geoffrey I. N. Waterhouse, Yining Zhang, Xiaoqing Lv, Chenyang Wang, Xiaojun Lv, Jing Xu
{"title":"Visible Light-Driven Synthesis of PtCu Alloy Nanodendrites for Electrocatalytic Nitrogen-Conversion Reactions","authors":"Guoqiang Wang,&nbsp;Chuanjun Wang,&nbsp;Xin Zhao,&nbsp;Shenjie Liu,&nbsp;Geoffrey I. N. Waterhouse,&nbsp;Yining Zhang,&nbsp;Xiaoqing Lv,&nbsp;Chenyang Wang,&nbsp;Xiaojun Lv,&nbsp;Jing Xu","doi":"10.1002/adsu.202400272","DOIUrl":null,"url":null,"abstract":"<p>Hierarchical metal alloy nanostructures with branched morphologies are highly desirable for electrocatalysis due to their large surface area, highly exposed active sites and stability for catalytic reactions. In this work, the successful synthesis of uniformly-sized, spherical Pt–Cu alloy nanodendrites are reported using a novel visible light-driven photoreduction method that exploits fluorescein as an excited state photosensitizer. Factors influencing the structure and morphology of the PtCu alloy nanodendrites are systematically explored, including pH, Pt<sup>4+</sup> and Cu<sup>2+</sup> concentrations, Pt:Cu molar ratio, Light emitting diode (LED) light irradiation time, light intensity, concentration of hexadecyl trimethyl ammonium bromide (CTAB), and concentration of triethylamine (TEA). The experiments reveal a simultaneous photoreduction/galvanic replacement mechanism for PtCu alloy nanodendrite formation. Importantly, the PtCu alloy nanodendrites are easily separable from the reaction solution, facilitating their use as electrocatalysts for the electrocatalytic nitrite reduction reaction (eNO<sub>2</sub>RR) to ammonia and also the nitrogen oxidation reaction (NOR) to nitrate. The PtCu alloy nanodendrites outperforms a commercially available Pt nanoparticle catalyst in both NO<sub>2</sub>RR and NOR, validating the approach.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"8 9","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400272","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hierarchical metal alloy nanostructures with branched morphologies are highly desirable for electrocatalysis due to their large surface area, highly exposed active sites and stability for catalytic reactions. In this work, the successful synthesis of uniformly-sized, spherical Pt–Cu alloy nanodendrites are reported using a novel visible light-driven photoreduction method that exploits fluorescein as an excited state photosensitizer. Factors influencing the structure and morphology of the PtCu alloy nanodendrites are systematically explored, including pH, Pt4+ and Cu2+ concentrations, Pt:Cu molar ratio, Light emitting diode (LED) light irradiation time, light intensity, concentration of hexadecyl trimethyl ammonium bromide (CTAB), and concentration of triethylamine (TEA). The experiments reveal a simultaneous photoreduction/galvanic replacement mechanism for PtCu alloy nanodendrite formation. Importantly, the PtCu alloy nanodendrites are easily separable from the reaction solution, facilitating their use as electrocatalysts for the electrocatalytic nitrite reduction reaction (eNO2RR) to ammonia and also the nitrogen oxidation reaction (NOR) to nitrate. The PtCu alloy nanodendrites outperforms a commercially available Pt nanoparticle catalyst in both NO2RR and NOR, validating the approach.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可见光驱动合成用于电催化氮转化反应的铂铜合金纳米树枝状化合物
具有支化形态的分层金属合金纳米结构因其大表面积、高暴露活性位点和催化反应的稳定性而成为电催化的理想材料。本研究采用一种利用荧光素作为激发态光敏剂的新型可见光驱动光还原法,成功合成了大小均匀的球形铂铜合金纳米树枝状化合物。实验系统地探讨了影响铂铜合金纳米树枝状体结构和形态的因素,包括 pH 值、Pt4+ 和 Cu2+ 浓度、Pt:Cu 摩尔比、发光二极管(LED)光照射时间、光照强度、十六烷基三甲基溴化铵(CTAB)浓度和三乙胺(TEA)浓度。实验揭示了铂铜合金纳米枝晶形成的光电还原/电化学置换同步机制。重要的是,PtCu 合金纳米枝晶很容易从反应溶液中分离出来,这有助于将其用作电催化亚硝酸盐还原反应(eNO2RR)生成氨和氮氧化反应(NOR)生成硝酸盐的电催化剂。铂铜合金纳米树枝晶在二氧化氮还原反应和氮氧化物还原反应中的性能均优于市售的铂纳米粒子催化剂,从而验证了这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
期刊最新文献
Simultaneous Triboelectric and Mechanoluminescence Sensing Toward Self-Powered Applications (Adv. Sustainable Syst. 12/2024) Masthead: (Adv. Sustainable Syst. 12/2024) Co Modified Pr0.6Sm0.4Mn1O3 Perovskite Enhances the Non-Radical Pathway for Efficient Removal of Rhodamine B Ambipolar Nature Accelerates Dual-Functionality on Ni/Ni3N@NC for Simultaneous Hydrogen and Oxygen Evolution in Electrochemical Water Splitting System (Adv. Sustainable Syst. 11/2024) All Bio-Based µ-Beads from Microalgae for Probiotics Delivery (Adv. Sustainable Syst. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1