{"title":"Effects of Cryorolling, Room Temperature Rolling, and Aging Treatment on the Mechanical, Electrical, and Wear Properties of a Cu-6Ni-6Sn Alloy","authors":"Zhibao Xie, Zhide Li, Delin Tang, Zhengyu Wang, Huijie Cui, Charlie Kong, Hailiang Yu","doi":"10.1007/s11661-024-07466-w","DOIUrl":null,"url":null,"abstract":"<p>The effects of cryorolling (CR), room-temperature rolling (RTR), and subsequent aging on the mechanical, electrical, and wear characteristics of Cu-6Ni-6Sn alloys were examined. Compared to the RTR specimens, those subjected to CR displayed a higher dislocation density and a greater number of nanosized deformation twins. The CR facilitated the uniform and dense formation of precipitates, enabling the CR-treated alloys to achieve an optimal balance of strength (1004 MPa), electrical conductivity (11.8 pct IACS), and wear resistance.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07466-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of cryorolling (CR), room-temperature rolling (RTR), and subsequent aging on the mechanical, electrical, and wear characteristics of Cu-6Ni-6Sn alloys were examined. Compared to the RTR specimens, those subjected to CR displayed a higher dislocation density and a greater number of nanosized deformation twins. The CR facilitated the uniform and dense formation of precipitates, enabling the CR-treated alloys to achieve an optimal balance of strength (1004 MPa), electrical conductivity (11.8 pct IACS), and wear resistance.